Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Theoretical Astrophysics Group, T-6 Los Alamos National Laboratory

³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 5: Stellar Structure Equations - II: Motion, Reactions

A D N A B N A B N

Agenda

- Web site access
- Energy Equation
- 2 Equations of Stellar Evolution
 - Equation of Motion
 - Equations of Composition Change

3 Summary

- Stellar Structure equations
- Build Your Own Star

Web site access Energy Equation

Overview

1 Recap

- Web site access
- Energy Equation

2 Equations of Stellar Evolution

- Equation of Motion
- Equations of Composition Change

3 Summary

- Stellar Structure equations
- Build Your Own Star

・ 同 ト ・ ヨ ト ・ ヨ

Web site access Energy Equation

Contact

Location & Dates:

Physics 236A, MTWTh 10:10-11:00 AM

Office hours:

Wednesdays, 13:00-14:30, 342F Tate

email:

I cannot guarantee that I will receive all emails due to SPAM filters. On class days I will try to reply to email within 24 h.

Web site:

http://stellarevolution.org/AST-4001
I will post notes, updates, problem sets, etc.

• Google course calendar (on Web site):

o86pe6r5paic30h4qv6acm9ej0%40group.calendar.google.com

イロト イポト イヨト イヨト

Web site access Energy Equation

Web site access

• user name: Ast-4001

• password: &32y^nbY

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 5: Stellar Structure Equations - II: Motion, Reactions

イロト イポト イヨト イヨト

Web site access Energy Equation

Energy Equation

- Stellar interior described by *local* thermodynamic equilibrium (LTE)
- energy equation

$$\dot{u} + P \frac{\partial}{\partial t} \left(\frac{1}{\rho} \right) = q - \frac{\partial F}{\partial m}$$

nuclear luminosity

$$L_{\rm nuc} = \int_0^M q \, \mathrm{d}m$$

イロト イポト イヨト イヨト

Equation of Motion Equations of Composition Change

・ 同 ト ・ ヨ ト ・ ヨ

Overview

Recap

- Web site access
- Energy Equation

2 Equations of Stellar Evolution

- Equation of Motion
- Equations of Composition Change

B Summary

- Stellar Structure equations
- Build Your Own Star

stationary terms

Equation of Motion Equations of Composition Change

Stellar Structure Equations

time-dependent terms

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$
(1)
$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}$$
(2)
$$\frac{\partial F}{\partial m} = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} - c_{P} \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}$$
(3)
$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right]$$
(4)
$$\frac{\partial X_i}{\partial t} = f_i \left(\rho, T, \mathbf{X}\right)$$
(5)

where $\boldsymbol{X} = \{X_1, X_2, \ldots, X_i, \ldots\}$.

Equation of Motion Equations of Composition Change

Force on Mass Element

small (cylindrical) volume

cross section: dSdensity: ρ \Rightarrow mass: $\Delta m = \rho dr dS$ Forces on mass element:

 gravitational force from sphere inside (below)

 $\frac{Gm\Delta m}{r^2}$

 net pressure from the surrounding gas

$$\left[P(r)-P(r+\mathrm{d}r)\right]\mathrm{d}S$$

 \Rightarrow Acceleration

$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} \Delta m = -\frac{Gm\Delta m}{r^2} + [P(r) - P(r + \mathrm{d}r)] \,\mathrm{d}S$$

- < ∃ >

Equation of Motion Equations of Composition Change

ヘロト ヘアト ヘビト ヘビト

3

Equation of Motion

Using

$$P(r+dr) = P(r) + \frac{\partial P}{\partial r} dr$$
, $\Delta m = \rho dr dS$

$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} \Delta m = -\frac{Gm\Delta m}{r^2} - \frac{\partial P}{\partial r} \frac{\Delta m}{\rho}$$

or

d² <i>r</i>	Gm	1 <i>∂P</i>
dt^2	$= -\frac{1}{r^2}$	$\overline{\rho} \ \overline{\partial r}$

Using $dr = dm/(4\pi r^2 \rho)$ we can write the *Equation of Motion* as

$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} = -\frac{Gm}{r^2} - 4\pi r^2 \frac{\partial P}{\partial m}$$

Equation of Motion Equations of Composition Change

イロト イポト イヨト イヨト

Hydrostatic Equilibrium

Neglecting acceleration we obtain the equation for hydrostatic equilibrium

radius coordinate:
$$\frac{\partial P}{\partial r} = -\rho \frac{Gm}{r^2}$$

mass coordinate: $\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}$

Νοτε

- pressure decreases outward
- pressure gradient vanishes at the center

Equation of Motion Equations of Composition Change

イロト イポト イヨト イヨト

Show that the pressure gradient vanishes at the center. Discuss with your neighbors. Really.

Equation of Motion Equations of Composition Change

イロト イポト イヨト イヨト

Central pressure of the star

Assume at surface $P(M) \approx 0$ we compute

$$P(0) = -\int_0^M \frac{Gm}{4\pi r^4} \,\mathrm{d}m > -\int_0^M \frac{Gm}{4\pi R^4} \,\mathrm{d}m = \frac{GM^2}{8\pi R^4}$$

Numerically...

$$P_{
m c} > 4.4 imes 10^{18} \, {{
m dyn}\over{
m cm^2}} \left({M\over{
m M_\odot}}
ight) \left({{
m R}_\odot\over R}
ight)^4$$

For the sun this is more than 450 million atmospheres.

Equation of Motion Equations of Composition Change

・ 同 ト ・ ヨ ト ・ ヨ ト

Nuclear Reactions

Each species *i* is defined by its mass number A_i and charge number Z_i .

We assume that nuclear reactions

conserve number of nucleons

$$\sum_{\mathrm{in}} A_i = \sum_{\mathrm{out}} A_i$$

conserve total charge

$$\sum_{in} Z_i = \sum_{out} Z_i$$

Equation of Motion Equations of Composition Change

Mass Fractions - Definitions

Assume species of partial density ρ_i , charge number Z_i , and mass number A_i .

We define

mass fraction

$$X_i = \frac{\rho_i}{\rho}$$

number density

$$n_i = \frac{\rho_i}{A_i m_{\rm H}}$$

mole fraction

$$Y_i = \frac{\rho_i}{A_i \rho}$$

Note that instead of $m_{\rm H}$ the atomic mass unit u (1/12 the mass of the neutral ¹²C atom, $u = \frac{1}{12}m_{^{12}C}$) should be used.

Equation of Motion Equations of Composition Change

・ロット (雪) () () () ()

э

Mass Fractions

۲

We obtain the relations

 $n_i = \frac{\rho}{m_{\rm H}} \frac{X_i}{A_i}$

$$X_i = n_i \frac{A_i}{
ho} m_{
m H}$$

$$Y_i = \frac{X_i}{A_i}$$

stationary terms

Equation of Motion Equations of Composition Change

Stellar Structure Equations

time-dependent terms

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$
(6)
$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}$$
(7)
$$\frac{\partial F}{\partial m} = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} - c_{P} \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}$$
(8)
$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right]$$
(9)
$$\frac{\partial X_i}{\partial t} = f_i \left(\rho, T, \mathbf{X}\right)$$
(10)

where $\boldsymbol{X} = \{X_1, X_2, \ldots, X_i, \ldots\}$.

Lecture 5: Stellar Structure Equations - II: Motion, Reactions

イロト イポト イヨト イヨト

Change of Composition: Mixing and Burning

The local composition, $\mathbf{X}(m, t)$, can change due to nuclear reactions and due to "*mixing*" processes inside the star.

$$\frac{\partial}{\partial t}X_{i}=f_{i,\mathrm{nuc}}\left(\rho,T,\mathbf{X}\right)+f_{i,\mathrm{mix}}\left(\rho,T,\mathbf{X}\right)$$

Often, this is approximated as a decoupled diffusive process

$$\frac{\partial}{\partial t}X_{i} = f_{i,\mathrm{nuc}}\left(\rho, T, \mathbf{X}\right) - \frac{\partial}{\partial m}\left(D_{m}\frac{\partial}{\partial m}X_{i}\right)$$

where the *mass diffusion coefficient*, D_m , is determined by the physical processes inside the stars. In radiative regions it is usually small, whereas it is large in *convective* regions. Convective regions evolve chemically homogeneously.

Equation of Motion Equations of Composition Change

ヘロン 人間 とくほ とくほ とう

Nuclear Reactions

In a very general form nuclear reactions can be written as α_1 nuclei of species 1 plus α_2 nuclei of species 2 ... react to β_1 nuclei of species 1 plus β_2 nuclei of species 2 ... and reverse:

$$\alpha_1 \mathbf{1} + \alpha_2 \mathbf{2} + \ldots \rightleftharpoons \beta_1 \mathbf{1} + \beta_2 \mathbf{2} + \ldots$$

 $Y_i = X_i/A_i$ is the mole fraction of nuclei *i* per mole nucleons. The total rate of change of species *i* due to nuclear reactions can then be written as (for species **1**, **2**, ...)

$$\frac{\partial}{\partial t} \mathbf{Y}_{i} = \sum_{\substack{\alpha_{1}, \alpha_{2}, \dots \\ \beta_{1}, \beta_{2}, \dots}} \lambda_{\alpha_{1} \mathbf{1} + \alpha_{2} \mathbf{2} + \dots \rightarrow \beta_{1} \mathbf{1} + \beta_{2} \mathbf{2} + \dots} \frac{\beta_{i} - \alpha_{i}}{\alpha_{1} ! \alpha_{2} ! \dots} \mathbf{Y}_{1}^{\alpha_{1}} \mathbf{Y}_{2}^{\alpha_{2}} \dots$$

Where the reaction rate $\lambda_{...} \propto \rho^{-1+\alpha_1+\alpha_2+...}$

Equations of Stellar Evolution

Equations of Composition Change

Overview - Burning Phases in Stars

$20\mathrm{M}_\odot$ star						
Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction	
н	He	¹⁴ N	0.02	10 ⁷	$4 H \xrightarrow{CNO} {}^{4}He$	
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → ¹² C ¹² C(α,γ) ¹⁶ O	
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C	
Ne	O, Mg	AI, P	1.5	3	20 Ne(γ, α) 16 O 20 Ne(α, γ) 24 Mg	
O	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O	
Si, Ŝ	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)	

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

・ロン ・雪 と ・ ヨ と Lecture 5: Stellar Structure Equations - II: Motion, Reactions

э

Stellar Structure equations Build Your Own Star

Overview

Recap

- Web site access
- Energy Equation

2 Equations of Stellar Evolution

- Equation of Motion
- Equations of Composition Change

3 Summary

- Stellar Structure equations
- Build Your Own Star

・ 同 ト ・ ヨ ト ・ ヨ

Stellar Structure equations Build Your Own Star

Summary

Equation of Motion

$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} = -\frac{Gm}{r^2} - 4\pi r^2 \frac{\partial P}{\partial m}$$

hydrostatic equilibrium

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}$$

change of composition

$$\frac{\partial X_{i}}{\partial t} = f_{i}\left(\rho, T, \mathbf{X}\right) = f_{i,\text{nuc}}\left(\rho, T, \mathbf{X}\right) + f_{i,\text{mix}}\left(\rho, T, \mathbf{X}\right)$$

nuclear reactions

$$\frac{\partial}{\partial t} Y_i = \sum_{\substack{\alpha_1, \alpha_2, \dots \\ \beta_1, \beta_2, \dots}} \lambda_{\alpha_1 \mathbf{1} + \alpha_2 \mathbf{2} + \dots \rightarrow \beta_1 \mathbf{1} + \beta_2 \mathbf{2} + \dots} \frac{\beta_i - \alpha_i}{\alpha_1! \alpha_2! \dots} Y_1^{\alpha_1} Y_2^{\alpha_2} \dots$$

イロト イポト イヨト イヨト

Stellar Structure equations Build Your Own Star

Stellar Evolution Project

• Bill Paxton's EZ Stellar Evolution code

http://www.kitp.ucsb.edu/~paxton/EZ-intro.html

- Uses Linux gfortran
- g95 FORTRAN compiler can be downloaded for most platforms.

http://www.g95.org

ヘロト 人間 ト ヘヨト ヘヨト