Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Theoretical Astrophysics Group, T-6 Los Alamos National Laboratory

³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

.≣⇒

Agenda

- Nuclear Reactions and Energy Release
- pp Chains and CNO Cycle

2 Energy of Stars

- The Virial Theorem
- Energy Conservation in Stars

3 Summary

- Summary
- Build Your Own Star

(* E) * E)

æ

Nuclear Reactions and Energy Release op Chains and CNO Cycle

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

Overview

- Nuclear Reactions and Energy Release
- pp Chains and CNO Cycle

2 Energy of Stars

- The Virial Theorem
- Energy Conservation in Stars

3 Summary

- Summary
- Build Your Own Star

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

(E) < (E)</p>

3

Summary (I)

nuclear reactions

$$\frac{\partial}{\partial t} Y_i = \sum_{\substack{\alpha_1, \alpha_2, \dots \\ \beta_1, \beta_2, \dots}} \lambda_{\alpha_1 \mathbf{1} + \alpha_2 \mathbf{2} + \dots \to \beta_1 \mathbf{1} + \beta_2 \mathbf{2} + \dots} \frac{\beta_i - \alpha_i}{\alpha_1 ! \alpha_2 ! \dots} Y_1^{\alpha_1} Y_2^{\alpha_2} \dots$$

mass excess

$$\Delta \mathcal{M}_i = m_i - A_i \mathbf{u}$$

nuclear energy release

$$\varepsilon_{\rm nuc} = -c^2 \sum_i \Delta \mathcal{M}_i \frac{\partial}{\partial t} Y_i$$

• a cool page with nuclear data http://wwwndc.jaea.go.jp/CN04/index.html

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔅

Summary (II)

reaction rate

$$\langle \sigma v \rangle \propto (kT)^{-2/3} \, e^{-\frac{3}{2} \left(\frac{4\pi^2 Z_1 Z_2 e^2}{h} \right)^{2/3} \left(\frac{m}{kT} \right)^{1/3}}$$

• relation between $\langle \sigma \mathbf{v} \rangle$ and λ

$$\lambda \propto \langle \sigma \mathbf{v} \rangle \, \rho^{\mathbf{m}} \,, \quad \mathbf{m} = \sum \alpha_{i} - \mathbf{1}$$

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

ヘロン 人間 とくほ とくほ とう

3

Hydrogen Burning - the two modes

- Two basic modes of hydrogen burning are distinguished
- The pp-chain in low-mass stars
- The Carbon-Nitrogen-Oxygen (CNO) cycle in high-mass stars

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

Hydrogen Burning - pp chains

Hydrogen burning

Energy release: Q(pp1) = 26.20 MeV Q(pp2) = 25.67 MeV Q(pp3) = 19.20 MeVReaction rate: $\langle \sigma v \rangle \propto T^4$

< < >> < </>

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

・ 回 ト ・ ヨ ト ・ ヨ ト

Notes on pp hydrogen burning

- All four chains fuse 4 protons to one ⁴He and therefore have the same difference in mass excess. They have the same energy supply.
- Different Q-values (amount of energy release) due to different amounts of energy being *carried away by neutrinos*.
- With increasing temperature the dominant burning switches from pp1 to pp2 to pp3 chains.

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Normal and Hot CNO Cycles

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

Hydrogen Burning - CNO bi-cycle

Energy release: Q(CNO) = 24.97 MeV

Reaction rate: $\langle \sigma v \rangle \propto T^{16}$

Branching: CNO-1 : CNO-2 \sim 10,000 : 1

くロト (過) (目) (日)

э

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

Hydrogen Burning - CNO bi-cycle

$${}^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$$

$${}^{13}N \rightarrow {}^{13}C + e^{+} + \nu$$

$${}^{13}C + {}^{1}H \rightarrow {}^{14}N + \gamma$$

$${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^{+} + \nu$$

$${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He$$

1

$${}^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{17}F \rightarrow {}^{17}O + e^{+} + \nu$$

$${}^{17}O + {}^{1}H \rightarrow {}^{14}N + {}^{4}He$$

Energy release: Q(CNO) = 24.97 MeV

Reaction rate: $\langle \sigma v \rangle \propto T^{16}$

Branching: CNO-1 : CNO-2 \sim 10,000 : 1

ヘロン 人間 とくほ とくほ とう

3

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

<ロ> (四) (四) (三) (三) (三)

Hydrogen Burning - CNO bi-cycle

- Usually the beta-decays are fast compared to the capture reactions, (p,γ).
- ¹⁴O: $\tau_{1/2} = 70$ sec ¹⁵O: $\tau_{1/2} = 122$ sec ¹³N: $\tau_{1/2} = 10$ min ¹⁷F: $\tau_{1/2} = 64$ sec ¹⁸O: $\tau_{1/2} = 110$ min
- ${}^{14}N(p,\gamma){}^{15}O$ usually is the slowest "bottleneck" reaction.
- CNO cycle burning converts most CNO isotopes into ¹⁴N.

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

Competition of Hydrogen-Burning Modes

Transition from pp-chains in low-mass stars (low T) to CNO chains in high-mass stars (high T)

ъ

Nuclear Reactions and Energy Release pp Chains and CNO Cycle

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

- hydrogen burning can proceeds in different modes. Which mode dominates depending on temperature and the mass of the star.
- We destinguish
 - o pp-chain(s)
 - CNO (bi-)cycle

The Virial Theorem Energy Conservation in Stars

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Overview

Recap

- Nuclear Reactions and Energy Release
- pp Chains and CNO Cycle

2 Energy of Stars

- The Virial Theorem
- Energy Conservation in Stars

3 Summary

- Summary
- Build Your Own Star

The Virial Theorem Energy Conservation in Stars

Virial Theorem

- due to hydrostatic equilibrium, internal energy of the star is connected to it gravitational binding energy
- starting from equation of hydrostatic equilibrium

$$\frac{\mathrm{d}P}{\mathrm{d}m} = -\frac{Gm}{4\pi r^4}$$

• multiply by $V = 4\pi r^3/3$ and integrate over entire star

$$\int_{P(0)}^{P(M)} V \, \mathrm{d}P = -\frac{1}{3} \int_0^M \frac{Gm}{r} \, \mathrm{d}m$$

recall: gravitational energy of the star; define Ω

$$\Omega = -\int_0^M \frac{Gm}{r}\,\mathrm{d}m$$

ヘロト 人間 とくほとくほとう

The Virial Theorem Energy Conservation in Stars

Virial Theorem

left-hand side: integration by parts

$$\int_{P(0)}^{P(M)} V \, \mathrm{d}P = [PV]_0^R - \int_{V(0)}^{V(M)} P \, \mathrm{d}V$$

- Note:
 - P(M) = 0 (surface) V(0) = 0 (center)
 - \Rightarrow first term vanishes
- hence we obtain (using $dm = \rho dV$, $dV = dm/\rho$)

$$\Omega = -3 \int_{V(0)}^{V(M)} P \, \mathrm{d} V = -3 \int_0^M \frac{P}{\rho} \, \mathrm{d} m$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

The Virial Theorem Energy Conservation in Stars

ヘロト 人間 ト ヘヨト ヘヨト

æ

Virial Theorem

• for some part of the stellar interior, $R_{\rm s} < R$ we may write

$$P_{\mathrm{s}}V_{\mathrm{s}} - \int_{0}^{M_{\mathrm{s}}} \frac{P}{
ho} \mathrm{d}m = \frac{1}{3}\Omega_{\mathrm{s}}$$

• where we define the gravitational binding energy of the interior as

$$\Omega_{\rm s} = -\int_0^{M_{\rm s}} \frac{Gm}{r} \, \mathrm{d}m$$

 note that this binding energy of the interior is unaffected by the outside layers!

The Virial Theorem Energy Conservation in Stars

Recap: Ideal Gas

- simple ideal gas with average particle mass m_{gas} temperature Tdensity ρ pressure $P = \rho k_{\rm B} T / m_{gas}$ ($k_{\rm B}$ is the Boltzmann constant)
- for gas with mean molecular weight μ with $m_{\text{gas}} = \mu \, \mathbf{u}$ we then have

$$\boldsymbol{P} = \mathcal{R}\rho T/\mu$$

where $\mathcal{R} = k_{\rm B} N_{\rm A}$ is the *gas constant*

- kinetic energy per particle is $\frac{3}{2}k_{\rm B}T$
- specific internal energy u is

$$u = \frac{3}{2} \frac{k_{\rm B} T}{m_{\rm gas}} = \frac{3}{2} \frac{P}{\rho}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

The Virial Theorem Energy Conservation in Stars

Virial Theorem for Ideal Gas

• total internal energy of the star

$$U=\int_0^M u\,\mathrm{d}m$$

• hence we have $(u = 3P/2\rho)$

$$\Omega = -3\int_0^M \frac{P}{\rho}\,\mathrm{d}m = -2\int_0^M u\,\mathrm{d}m = -2U$$

Virial Theorem for ideal gas

$$U = -\frac{1}{2}\Omega$$

ヘロン 人間 とくほ とくほ とう

3

The Virial Theorem Energy Conservation in Stars

generally we can write the gravitational binding energy as

$$\Omega = -\int_0^M \frac{Gm}{r} \,\mathrm{d}m = -\alpha \frac{GM^2}{R}$$

where α is a constant of order unity depending on the internal structure of the star

hence we can write

$$U = \frac{1}{2}\alpha \frac{GM^2}{R}$$

ヘロン 人間 とくほ とくほ とう

3

The Virial Theorem Energy Conservation in Stars

Virial Theorem

• we can define an average temperature of the star, \overline{T} , by

$$U = \int_0^M \frac{3}{2} \frac{k_{\rm B}T}{m_{\rm gas}} \,\mathrm{d}m = \frac{3}{2} \frac{k_{\rm B}}{m_{\rm gas}} \bar{T}M$$

• and using $\bar{
ho} = 3M/4\pi R^3$ we obtain

$$\bar{T} = \frac{\alpha}{3} \frac{m_{\rm gas}}{k_{\rm B} G} \frac{M}{R} = \alpha \left(\frac{4\pi}{81}\right)^{1/3} \frac{m_{\rm gas}}{k_{\rm B} G} M^{2/3} \bar{\rho}^{1/3} \propto M^{2/3} \bar{\rho}^{1/3}$$

⇒ denser and more massive stars are hotter • for $\alpha = \frac{1}{2}$ and assuming atomic hydrogen gas

$$\bar{T}\approx 4{\times}10^6 {\left(\frac{M}{M_{\odot}}\right)} {\left(\frac{R_{\odot}}{R}\right)} \, \mathrm{K}$$

• Note that $\bar{T} \gg T_{\rm eff} \Rightarrow$ interior ionized plasma

The Virial Theorem Energy Conservation in Stars

Total Energy of the Star

Integrating the energy equation

$$\frac{\partial}{\partial t}u + P\frac{\partial}{\partial t}\left(\frac{1}{\rho}\right) = q - \frac{\partial F}{\partial m}$$

over the entire star we obtain

$$\int_0^M \frac{\partial}{\partial t} u \, \mathrm{d}m + \int_0^M P \frac{\partial}{\partial t} \left(\frac{1}{\rho}\right) \mathrm{d}m = L_{\mathrm{nuc}} - L$$

• t and m are independent variables

$$\int_0^M \frac{\partial}{\partial t} u \, \mathrm{d}m = \frac{\mathrm{d}}{\mathrm{d}t} \int_0^M u \, \mathrm{d}m = \frac{\mathrm{d}}{\mathrm{d}t} U = \dot{U}$$

we can write

$$\frac{\partial}{\partial t} \left(\frac{1}{\rho} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial V}{\partial m} \right) = \frac{\partial \dot{V}}{\partial m}$$

and $V - 4\pi r^2 r$

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

< 回 > < 回 > < 回 > .

æ

The Virial Theorem Energy Conservation in Stars

Total Energy of the Star

integrating

$$\int_0^M P \frac{\partial \dot{V}}{\partial m} \, \mathrm{d}m = \left[P \dot{V} \right]_0^M - \int_0^M 4\pi r^2 \dot{r} \frac{\partial P}{\partial m} \, \mathrm{d}m$$

- Note:
 - P(M) = 0 (surface) $\dot{V}(0) = 0$ (center)
 - \Rightarrow first term vanishes
- we can write

$$\dot{U} - \int_0^M 4\pi r^2 \dot{r} \frac{\partial P}{\partial m} \,\mathrm{d}m = L_{\mathrm{nuc}} - L$$

ヘロン 人間 とくほ とくほ とう

3

The Virial Theorem Energy Conservation in Stars

ヘロン 人間 とくほ とくほ とう

3

Total Energy of the Star

equation of motion

$$\frac{\partial^2}{\partial t}r = \ddot{r} = -\frac{Gm}{r^2} - \frac{1}{\rho}\frac{\partial P}{\partial r}$$

multiply by r and integrate over entire star

$$\int_0^M \dot{r}\ddot{r}\,\mathrm{d}m = -\int_0^M \frac{Gm}{r^2}\dot{r}\,\mathrm{d}m - \int_0^M 4\pi r^2\dot{r}\frac{\partial P}{\partial m}\,\mathrm{d}m$$

The Virial Theorem Energy Conservation in Stars

Total Kinetic Energy of the Star

we define the total kinetic energy of the star by

$$E_{\rm kin} = \int_0^M \frac{1}{2} \dot{r}^2 \, \mathrm{d}m = \int_0^M \frac{1}{2} v^2 \, \mathrm{d}m$$

and can write

$$\int_0^M \dot{r}\ddot{r} \,\mathrm{d}m = \int_0^M \frac{\partial}{\partial t} \left(\frac{1}{2}\dot{r}^2\right) \,\mathrm{d}m = \frac{\mathrm{d}}{\mathrm{d}t} \int_0^M \frac{1}{2}\dot{r}^2 \,\mathrm{d}m = \frac{\mathrm{d}}{\mathrm{d}t} E_{\mathrm{kin}} = E_{\mathrm{kin}}^{\cdot}$$

ヘロト ヘアト ヘビト ヘビト

ъ

The Virial Theorem Energy Conservation in Stars

Total Energy of the Star

we also have

$$-\int_0^M Gm\frac{\dot{r}}{r^2} \,\mathrm{d}m = \int_0^M Gm\frac{\partial}{\partial t} \left(\frac{1}{r}\right) \,\mathrm{d}m = \frac{\mathrm{d}}{\mathrm{d}t} \int_0^M \frac{Gm}{r} \,\mathrm{d}m = -\dot{\Omega}$$

hence we have

$$\dot{E_{\mathrm{kin}}} + \dot{\Omega} = -\int_0^M 4\pi r^2 \dot{r} \frac{\partial P}{\partial m} \mathrm{d}m$$

recall

$$-\int_0^M 4\pi r^2 \dot{r} \frac{\partial P}{\partial m} \,\mathrm{d}m = L_{\rm nuc} - L - \dot{U}$$

イロト 不得 とくほと くほとう

The Virial Theorem Energy Conservation in Stars

Total Energy of the Star

• combining all terms we have

$$\dot{U} + \dot{E_{kin}} + \dot{\Omega} = L_{nuc} - L$$

• the total energy of the star is

$$E = U + E_{\rm kin} + \Omega$$

therefore we have

$$\dot{E} = L_{\rm nuc} - L$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

The Virial Theorem Energy Conservation in Stars

ヘロン 人間 とくほ とくほ とう

Total Energy of the Star

Notes:

- for hydrostatic equilibrium $E_{kin} = 0$
- for thermal equilibrium $\dot{E} = 0$
- hence for a hydrostatic star in thermal equilibrium U and Ω are related by virial theorem and conserved *independently*.
- for an ideal gas the total energy of the star is given by

$$E = U + \Omega = \frac{1}{2}\Omega = -U$$

- \Rightarrow stars have negative heat capacity!
- \Rightarrow when stars lose energy, $\dot{E} = L_{nuc} L < 0$, they contract and get hotter

Summary Build Your Own Star

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Overview

Recap

- Nuclear Reactions and Energy Release
- pp Chains and CNO Cycle

2 Energy of Stars

- The Virial Theorem
- Energy Conservation in Stars

3 Summary

- Summary
- Build Your Own Star

Summary Build Your Own Star

Summary

virial theorem

$$\Omega = -3 \int_{V(0)}^{V(M)} P \, \mathrm{d} V = -3 \int_0^M \frac{P}{\rho} \, \mathrm{d} m$$

virial theorem for ideal gas

$$U = -\frac{1}{2}\Omega$$

energy conservation

$$\dot{U} + \dot{E_{kin}} + \dot{\Omega} = L_{nuc} - L$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

stars have negative heat capacity!

Summary Build Your Own Star

Stellar Evolution Project

• Bill Paxton's EZ Stellar Evolution code

http://www.kitp.ucsb.edu/~paxton/EZ-intro.html

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

э.

- Uses Linux gfortran
- g95 FORTRAN compiler can be downloaded for most platforms.

http://www.g95.org