Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger1,2,³

¹ School of Physics and Astronomy University of Minnesota

²Theoretical Astrophysics Group, T-6 Los Alamos National Laboratory

³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

4 ロ) (何) (日) (日)

ă,

 $2Q$

Stars and Stellar Evolution - Fall 2008 - Alexander Heger **[Lecture 10: Equation of State](#page-29-0)**

Agenda

[Recap](#page-2-0)

- **[Corrections](#page-3-0)**
- [Summary of Time Scales](#page-4-0)

2 [Equation of State](#page-5-0)

- **[Gas Pressure](#page-9-0)**
- **[Degenerate Gas Pressure](#page-21-0)**
- **[Radiation Pressure](#page-25-0)**

3 [Summary](#page-27-0)

- **•** [Summary](#page-28-0)
- [Build Your Own Star](#page-29-0)

∢ 重→

ミト

4 0 8

B

[Summary of Time Scales](#page-4-0)

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

4 0 8

B

 $2Q$

Overview

[Recap](#page-2-0)

- **[Corrections](#page-3-0)**
- [Summary of Time Scales](#page-4-0)

[Equation of State](#page-5-0)

- **[Gas Pressure](#page-9-0)**
- **[Degenerate Gas Pressure](#page-21-0)**
- **[Radiation Pressure](#page-25-0)**

[Summary](#page-27-0)

- **•** [Summary](#page-28-0)
- **[Build Your Own Star](#page-29-0)**

[Corrections](#page-3-0) [Summary of Time Scales](#page-4-0)

Dynamical Time Scale

- Consider change of radius *R*.
- at free fall the escape velocity at the surface is characteristic velocity

$$
\textit{v}_{\rm esc}=\sqrt{\frac{2GM}{R}}
$$

using average density $\bar{\rho} = 3M/4\pi R^3$ we can write

$$
\tau_{\text{dyn}} \approx \frac{R}{v_{\text{esc}}} = \sqrt{\frac{R^3}{2GM}} = \sqrt{\frac{3}{8\pi}} \frac{1}{\sqrt{G\bar{\rho}}} \approx \frac{1}{\sqrt{G\bar{\rho}}}
$$

• an alternative definition comes from

$$
-\frac{\partial^2}{\partial t^2}r\bigg|_{\text{surface}} \approx R/\tau_{\text{dyn}}^2 \quad \Rightarrow \quad \tau_{\text{dyn}} \approx \sqrt{\frac{R}{g}} = \sqrt{\frac{R^3}{GM}}
$$

ă

 $2Q$

Stars and Stellar Evolution - Fall 2008 - Alexander Heger **[Lecture 10: Equation of State](#page-0-0)**

[Summary of Time Scales](#page-4-0)

Summary of Time Scales

dynamic time scale

$$
\tau_{\sf dyn} \approx \frac{1}{\sqrt{G\bar{\rho}}}
$$

• Kelvin-Helmholtz (thermal) time scale

$$
\tau_{\text{thermal}} \approx \tau_{\text{KH}} = \frac{GM^2}{2RL}
$$

o nuclear time scale

$$
\tau_{\text{nuc}} \approx \frac{\epsilon \text{Mc}^2}{L} \,, \quad \epsilon \sim 10^{-3}
$$

c comparison of time scales

$$
\tau_{\rm dyn} \ll \tau_{\rm KH} \ll \tau_{\rm nuc}
$$

イロメ 不優 トメ ヨ メ ス ヨ メー

÷.

Overview

[Recap](#page-2-0)

- **[Corrections](#page-3-0)**
- [Summary of Time Scales](#page-4-0)

2 [Equation of State](#page-5-0)

- **[Gas Pressure](#page-9-0)**
- **[Degenerate Gas Pressure](#page-21-0)**
- **[Radiation Pressure](#page-25-0)**

[Summary](#page-27-0)

- **•** [Summary](#page-28-0)
- [Build Your Own Star](#page-29-0)

4 伊 ▶

4 0 8

→ 重 → → 重 →

ă,

[Gas Pressure](#page-9-0) [Degenerate Gas Pressure](#page-21-0) [Radiation Pressure](#page-25-0)

General Equation of State

Generally we can write the equation of state as a unique function

$$
P=P(\rho,T,\textbf{X})
$$

• Obviously, this could also be solved, for different applications, as

$$
\rho = \rho(P, T, \mathbf{X}) \quad \text{or} \quad T = T(P, \rho, \mathbf{X})
$$

- so far we have only considered the case of *ideal gas*.
- in stars density can become so high that gas particles interact, temperature is so high that atoms are ionized and that radiation contributes to the pressure

イロメ イ押 メイヨメ イヨメ

Coulomb Interaction

• For a star of average density $\bar{\rho}$ and particle mass of μ u we have a mean distance between particles of

$$
d = \left(\frac{\mu \mathsf{u}}{\bar{\rho}}\right)^{1/3} = \left(\frac{4\pi\mu \mathsf{u}}{3M}\right)^{1/3}R
$$

• we may estimate the mean Coulomb Energy by

$$
\epsilon_{\text{Coulomb}} = \frac{Z^2 e^2}{d}
$$

• we may compare to the characteristic energy of the particles in the stars $k_B\bar{T}$ where $\bar{T} \approx \alpha \mu \mu G M/3 k_B R$:

$$
\frac{\epsilon_{\text{Coulomb}}}{k_{\text{B}}\bar{\tau}} \sim \frac{3Z^2e^2}{\mu^{4/3}u^{4/3}\alpha GM^{2/3}}
$$

 \rightarrow \rightarrow \equiv \rightarrow

 Ω

[Gas Pressure](#page-9-0) [Degenerate Gas Pressure](#page-21-0) [Radiation Pressure](#page-25-0)

メミメメ 重す

4 0 8 \leftarrow \leftarrow \rightarrow $2Q$

Coulomb Interaction

Notes:

• For the sun

$$
\Gamma = \frac{\epsilon_{\text{Coulomb}}}{k_{\text{B}}\bar{T}} \sim 0.01
$$

this Γ is often call the *Coulomb Parameter*

- \bullet for $M \leq 10^{-3}$ M_☉, Γ becomes of order unity this is the mass scale of planets
- typically for
	- $Γ ≈ 5:$ transition from gas to liquid
	- $Γ ≈ 175$: transition from liquid to solid

Define pressure by momentum transfer per unit area per unit time by gas "particles". Assume particles have velocity *v* and hit the surface area d*S* at an angle Θ.

(□) (f)

[Gas Pressure](#page-9-0) [Degenerate Gas Pressure](#page-21-0) [Radiation Pressure](#page-25-0)

Definition of Pressure

We use

- *n*(*p*) d*p* is number of particles per unit volume in momentum interval $(p, p + dp)$
- assume elastic reflection of particle
- momentum transferred in collision is given by twice momentum change, the momentum component perpendicular to the surface normal

$$
\Delta p = 2p\cos\Theta
$$

K ロ ト K 何 ト K ヨ ト K ヨ ト

 290

E

• assume isotropic particle distribution. We define *n*(Θ, *p*) dΘ d*p* as the number of particles in a cone (Θ , Θ + d Θ) and with momenta (p , p + d p)

[Gas Pressure](#page-9-0) [Degenerate Gas Pressure](#page-21-0) [Radiation Pressure](#page-25-0)

Definition of Pressure

• in isotropic distribution number of particles per unit solid angle d ω is proportional to the solid angle itself

$$
\frac{n(\Theta, p) d\Theta d\rho}{n(p) d\rho} = \frac{d\omega}{4\pi} = \frac{2\pi \sin \Theta d\Theta}{4\pi} = \frac{1}{2} \sin \Theta d\Theta
$$

- the number of particles that strike surface area d*S* within a time interval δ*t* is then *n*(*p*, Θ)*v*δ*t* d*S* cos Θ and they transfer a momentum ∆*p* = 2*p* cos Θ.
- \bullet The momentum transfer per incident angle Θ is then

$$
\delta p_\Theta = n(\Theta, p) \, 2 p v \cos^2 \Theta \, d \Theta \, d p \, \delta t \, d S
$$

 $=$ *n*(*p*) *pv* cos² Θ sin Θ d Θ d*p* δ *t* d*S*

4 ロ) (何) (日) (日)

ă,

Definition of Pressure Integral

• The pressure, defined as the integral of δp_{Θ} over all $\Theta = (0, \pi/2)$ and all momenta $p = (0, \infty)$ per unit time δt and per surface area d*S* is then

$$
P = \int_0^\infty \int_0^{\pi/2} n(p) \, p v \cos^2 \Theta \, \sin \Theta \, d\Theta \, dp
$$

$$
P = \int_0^{\pi/2} \cos^2 \Theta \, \sin \Theta \, d\Theta \int_0^{p i/2} v \, p \, n(p) \, dp
$$

 J_0

イロメ イ押 メイヨメ イヨメ

 $2Q$

э

That is, we obtain the *pressure integral*

$$
P=\frac{1}{3}\int_0^\infty v\,p\,n(p)\,\mathrm{d}p
$$

Definition of Pressure Contributions

Generally we have different contributions to the total pressure:

$$
P=P_{\rm I}+P_{\rm e}+P_{\rm rad}=P_{\rm gas}+P_{\rm rad}
$$

o one often defines

$$
\beta = P_{\rm gas}/P
$$

and hence can write

$$
P_{\text{gas}} = \beta P
$$

and

$$
P_{\text{rad}} = (1 - \beta)P
$$

- Obviously, $0 < \beta < 1$:
	- for $\beta \ll 1$ the pressure is called *radiation-dominated*
	- for β ∼ 1 the pressure is called *gas-[do](#page-12-0)[min](#page-14-0)[a](#page-12-0)[te](#page-13-0)[d](#page-14-0)*

[Gas Pressure](#page-9-0) [Degenerate Gas Pressure](#page-21-0) [Radiation Pressure](#page-25-0)

Ion Pressure

Stars and Stellar Evolution - Fall 2008 - Alexander Heger **[Lecture 10: Equation of State](#page-0-0)**

Ion Pressure

• Inside stars the ions usually follow, in very good approximation, the Maxwell-Boltzmann distribution

$$
n(p) dp = \frac{4\pi n_{\text{I}}p^2 dp}{\sqrt{2\pi m_{\text{I}}k_{\text{B}}T^3}}e^{-\frac{p^2}{2m_{\text{I}}k_{\text{B}}T}}
$$

• and the resulting pressure is given by the usual

$$
P_{\rm I} = n_{\rm I} k_{\rm B} T
$$

• recall that the total number density of ions is given by adding up the contributions from all species *i*:

$$
n_{\mathsf{I}} = \sum_i n_i = \sum_i \frac{\rho}{\mathsf{u}} Y_i
$$

つひへ

wh[e](#page-16-0)re $Y_i = X_i/A_i$ $Y_i = X_i/A_i$ $Y_i = X_i/A_i$ is the mole fraction [of](#page-14-0) [sp](#page-16-0)e[ci](#page-15-0)e[s](#page-8-0) *i*[.](#page-20-0)

Ion Pressure

with the definition of the *mean molecular weight* of the ions

$$
\frac{1}{\mu_I} = \sum_i Y_i
$$

and can write

$$
n_{\rm l}=\frac{\rho}{\mu_{\rm l} u}
$$

• for a stellar gas composed mostly of hydrogen and helium, we may write

$$
\frac{1}{\mu_{\rm l}} \approx X + \frac{1}{4}Y + (1 - X - Y)\frac{1}{\langle A \rangle_{\rm metals}}
$$

B

 $2Q$

• for the sun we roughly have $\langle A \rangle_{\text{metals}} \approx 20$ and hence $\mu_1 = 1.29$ **K ロ ト K 何 ト K ヨ ト K ヨ ト**

Ion Pressure

Using the definition of the gas constant

$$
\mathcal{R}=k_B N_A\,,\quad (N_A u=1g)
$$

we may write the ion pressure in the usual form

$$
P_{\rm I}=\frac{\mathcal{R}T\rho}{\mu_{\rm I}}
$$

K ロ ト K 何 ト K ヨ ト K ヨ ト

÷.

Ideal Electron Gas

For an ideal (non-degenerate) electron gas we have similar to the ions

$$
P_{\rm e}=n_{\rm e}k_{\rm B}T
$$

where $n_{\rm e}$ is the number for "free" electrons.

- to good approximation, for most of the interior of most stars, the gas can be assumed fully ionized
- the number density of electrons is then given by

$$
n_{\rm e} = \sum_i Z_i n_i = \frac{\rho}{\rm u} \sum_i Z_i Y_i
$$

we define
$$
\frac{1}{\mu_e} = \sum_i Z_i Y_i
$$
 and obtain $n_e = \frac{\rho}{\mu_e u}$

メミメメ ヨメ

Ideal Electron Gas Pressure

• for a stellar gas composed mostly of hydrogen and helium, we may write

$$
\frac{1}{\mu_{\mathsf{e}}} \approx X + \frac{1}{2}Y + (1 - X - Y)\left\langle \frac{Z}{A} \right\rangle_{\text{metals}}
$$

• for most stellar compositions

$$
\left\langle \frac{Z}{A} \right\rangle_{\text{metals}} \approx \frac{1}{2}
$$

and we can approximate

$$
\frac{1}{\mu_{\mathsf{e}}}\approx \frac{1}{2}(1+X)
$$

イロメ イ押 メイヨメ イヨメ

B

 QQ

• for the sun we have $\mu_e \approx 1.17$

[Gas Pressure](#page-9-0) [Degenerate Gas Pressure](#page-21-0) [Radiation Pressure](#page-25-0)

Total Ideal Gas Pressure

• The total pressure then is

$$
P_{\text{gas}} = P_{\text{l}} + P_{\text{e}} = \left(\frac{1}{\mu_{\text{l}}} + \frac{1}{\mu_{\text{e}}}\right) \mathcal{R} \rho \mathcal{T} = \frac{\mathcal{R} \rho \mathcal{T}}{\mu}
$$

where we defined the mean molecular weight of the gas

$$
\frac{1}{\mu}=\frac{1}{\mu_I}+\frac{1}{\mu_e}
$$

イロメ イ押 メイヨメ イヨメ

÷.

 $2Q$

• for the sun we have $\mu \approx 0.61$

Degenerate Electron Pressure

- electrons much lighter than ions $(m_\mathrm{e} \ll m_\mathrm{l})$ less momentum for a given energy $k_B T \Rightarrow$ become degenerate first
- Heisenberg's uncertainty principle

$$
\Delta^3 x \Delta^3 p \geq h^3
$$

plus two spin orientations

• for a completely degenerate isotropic electron gas we have the distribution function

$$
n_e(p)\,dp = \frac{2}{\Delta^3 x} = \frac{2}{h^3} 4\pi p^2\,dp
$$

イロト イ伊 トイヨ トイヨ トー

D.

 QQ

for $p < p_F$ and $n_e(p)$ d $p = 0$ otherwise

[Gas Pressure](#page-9-0) [Degenerate Gas Pressure](#page-21-0) [Radiation Pressure](#page-25-0)

ă

B

4日)

同 × € **B** ×. . p $2Q$

Degenerate Electron Gas

Degenerate Electron Pressure

The maximum ("Fermi") momentum is obtained by integrating

$$
n_{\rm e}=\int_0^{\rho_{\rm F}}n_{\rm e}(\rho)\,\mathrm{d}\rho
$$

to obtain

$$
\rho_{\mathsf{F}}=\left(\frac{3\hbar^3 n_{\rm e}}{8\pi}\right)^{1/3}
$$

 \bullet the pressure integral than gives

$$
P_{\text{e,deg}} = \frac{8\pi p_{\text{F}}^{5}}{14m_{\text{e}}h^{3}} = \frac{h^{2}}{20m_{\text{e}}u^{5/3}}\left(\frac{3}{\pi}\right)^{2/3}\left(\frac{\rho}{\mu_{\text{e}}}\right)^{5/3} = K_{1}\rho^{5/3} \propto \rho^{5/3}
$$

K ロ ト K 何 ト K ヨ ト K ヨ ト

B

 QQ

using $n_{\text{e}}=\rho/\mu_{\text{e}}$ u, and $K_{1}\approx10^{13}\frac{\text{dyn}\,\text{cm}^{-2}}{(\text{g}\text{cm}^{-3})^{5/3}}.$

Degenerate Relativistic Pressure

• generally we have

$$
v=\frac{\rho}{m_e}\left/\sqrt{1+\frac{\rho^2}{m_e{}^2c^2}}\right.
$$

but for $p \gg m_e c$ we have $v \to c$ and we replace *v* by *c* in the pressure integral and after integration obtain

$$
P_{\rm e,rel-deg} = \frac{hc}{8u^{4/3}} \left(\frac{3}{\pi}\right)^{1/3} \left(\frac{\rho}{\mu_{\rm e}}\right)^{4/3} = K_2 \rho^{4/3} \propto \rho^{4/3}
$$

and $K_2 \approx 1.24 \times 10^{15} \frac{\text{dyn cm}^{-2}}{(\text{gcm}^{-3})^{4/3}}$.

• Note that for the degenerate electron gas the pressure is insensitive to temperature. **K ロ ト K 何 ト K ヨ ト K ヨ ト**

Radiation Pressure

• From the Planck spectrum

$$
n(\nu)d\nu=\frac{8\pi\nu^2}{c^3}\frac{1}{e^{\frac{h\nu}{k_B T}}-1}d\nu
$$

we obtain

$$
P_{\text{rad}} = \frac{1}{3} \int_0^\infty c \frac{h\nu}{c} n(\nu) \, \mathrm{d}\nu = \frac{1}{3} a T^4
$$

with the radiation constant

$$
a=\frac{8\pi^5 k_B^4}{15c^3h^3}=\frac{4\sigma}{c}
$$

イロメ 不優 トメ ヨ メ ス ヨ メー

 2990

÷.

[Gas Pressure](#page-9-0) [Degenerate Gas Pressure](#page-21-0) [Radiation Pressure](#page-25-0)

Regimes of the EOS

Different regimes of the equation of state as a function of T and ρ .

← 一个 →

 \mathcal{A}

4日下

ミメス ヨメ

 2990

B

[Summary](#page-28-0) [Build Your Own Star](#page-29-0)

4 伊 ▶

4 0 8

医电子 化重子

B

 $2Q$

Overview

[Recap](#page-2-0)

- **[Corrections](#page-3-0)**
- [Summary of Time Scales](#page-4-0)

[Equation of State](#page-5-0)

- **[Gas Pressure](#page-9-0)**
- **[Degenerate Gas Pressure](#page-21-0)**
- **[Radiation Pressure](#page-25-0)**

3 [Summary](#page-27-0)

- **•** [Summary](#page-28-0)
- [Build Your Own Star](#page-29-0)

[Summary](#page-28-0) [Build Your Own Star](#page-29-0)

イロト イ押 トイヨ トイヨト

 $2Q$

Summary of Pressure Contributions

- Pressure integral $P=\frac{1}{3}$ $\frac{1}{3} \int_0^\infty v p \, n(p) \, \mathrm{d}p$
- $P = P_1 + P_e + P_{rad} = P_{gas} + P_{rad}$ define $\beta = P_{\text{gas}}/P \Rightarrow P_{\text{gas}} = \beta P$, $P_{\text{rad}} = (1 - \beta)P$
- gas pressure

 $P_{\mathsf{gas}} = \mathcal{R} \rho \frac{I}{\mu}$

degenerate electron pressure

$$
P_{\rm e, deg} = \frac{\hbar^2}{20 m_{\rm e} u^{5/3}} \left(\frac{3}{\pi}\right)^{2/3} \left(\frac{\rho}{\mu_{\rm e}}\right)^{5/3}
$$

• relativistic degenerate electron pressure

$$
P_{\text{e,rel-deg}} = \tfrac{\hbar c}{8 \mathrm{u}^{4/3}} \big(\tfrac{3}{\pi}\big)^{1/3} \Big(\tfrac{\rho}{\mu_\text{e}}\Big)^{4/3}
$$

• radiation pressure

$$
P_{\rm rad} = \frac{1}{3} \int_0^\infty c \frac{h\nu}{c} n(\nu) d\nu = \frac{1}{3} a T^4
$$

[Summary](#page-28-0) [Build Your Own Star](#page-29-0)

Stellar Evolution Project

Bill Paxton's **EZ Stellar Evolution** code

http://www.kitp.ucsb.edu/∼paxton/EZ-intro.html

イロト イ団ト イヨト イヨト

È. $2Q$

- **o** Uses Linux gfortran
- g95 FORTRAN compiler can be downloaded for most platforms.

http://www.g95.org