Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Theoretical Astrophysics Group, T-6 Los Alamos National Laboratory

³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Announcement

The *3rd* Annual Irving and Edythe MISEL *FAMILY* LECTURE

Public Lecture Tuesday, September 23, 2008 7:00pm

Van Vleck Auditorium Room 150, Tate Lab of Physics Physics and Astronomy Colloquium The Cosmological Tests Wednesday, September 24, 2008 3:35pm Room 131 Tate Lab of Physics

∃ → < ∃</p>

For more information

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 12: Equation of State and Opacity

Burning Neutron Stars Alexander Heger

Friday, September 26, 15:00, PHYS 435

The probably by far most common thermonuclear explosion to occur in nature is the explosion of a thin layer of material, about the height of the physics building, that has accumulated on the surface of a neutron star, about the size of Minneapolis, in a binary star system - Type I X-ray bursts. I show theoretical models for such outbursts, their very specific mode of nuclear burning unheard of in any other stellar system, as well as their much bigger cousins, the superbursts. I will discuss our current difficulty in understanding how those are made, and possible solutions.

・ 同 ト ・ ヨ ト ・ ヨ

Agenda

1 Recap

- Summary
- Adiabatic Index and Exponent
- Saha Equation

2 EOS & Opacity

- Equation of State from Pairs and Dissociation
- Energy Transport and Opacity

3 Summary

- Summary
- Build Your Own Star

Summary Adiabatic Index and Exponent Saha Equation

- **→** → **→**

Overview

Recap

- Summary
- Adiabatic Index and Exponent
- Saha Equation

2 EOS & Opacity

- Equation of State from Pairs and Dissociation
- Energy Transport and Opacity

3 Summary

- Summary
- Build Your Own Star

Summary Adiabatic Index and Exponent Saha Equation

(日) (同) (三) (三)

Astrophysical Constants in cgs

Physical and Astronomical Constants

CODATA Internationally recommended values of the Fundamental Physical Constants. The most recent values can be found at http://physics.nist.gov/cuu/Constants.

Solar mass	M_{\odot}	=	1.989 · 10 ³³ gm
Solar radius	R_{∞}	=	6.955 · 10 ¹⁰ cm
Solar effective temperature	$T_{eff,\Theta}$	=	5780 K
Solar surface gravity	4.0	=	2.744 · 10 ⁴ cm/sec ²
Solar luminosity	L_{\odot}	=	3.846 - 10 ³⁸ erg/sec
Solar absolute bol. mag.	$M_{b,\odot}$	=	+4.77
Velocity of light in vacuo	c	=	2.99792458 · 10 ¹⁰ cm/sec
Constant of gravitation	G	=	$6.6742 \cdot 10^{-8} \text{ cm}^3/(\text{gm}\text{s}^2)$
Boltzmann constant	k	=	1.3807 10 ⁻¹⁶ erg/K
Avogadro's number	N_0	-	6.022 · 10 ²³ mole ⁻¹
Atomic mass unit	1 AMU	-	$1/N_0 = H$
		=	1.66054 · 10 ⁻²⁴ gm = 931.5 MeV
Gas constant	R	=	8.314 · 107 erg/K/mole
Planck's constant	h		6.626 · 10 ⁻²⁷ ergsec
	$\hbar = h/2\pi$	-	1.0546 · 10 ⁻²⁷ erg sec
Electronic charge	e	-	4.803 · 10 ⁻¹⁰ e.s.u.
		-	1.602 · 10 ⁻¹⁹ C
Fine structure constant	e ² /ħc	=	1/137.036
Stefan-Boltzmann constant	σ	=	5.670 · 10 ⁻⁵ erg/(cm ² K ⁴ sec)
Radiation pressure constant	$a = 4\sigma/c$	=	7.566 · 10 ⁻¹⁵ erg/(cm ³ K ⁴)
Electron rest mass	me	-	$9.109 \cdot 10^{-28} \text{ gm} = 0.5110 \text{ MeV}$
Mass ratio proton/electron	m_p/m_c	-	1836.2
Mass of hydrogen atom	Hi	=	1.6734 · 10 ⁻²⁴ gm
		-	1.0081 AMU
Classical electron radius	ϵ^2/m_ec^2	=	2.818 · 10 ⁻¹³ cm
Compton wavelength of electron	$\lambda_C = \hbar/m_e c$	=	3.8616 · 10 ⁻¹¹ cm
Thomson scattering cross section	<i>a</i> 0	=	$(8\pi/3) (e^2/m_e c^2)^2$
		=	0.6652 10 ⁻²⁴ cm ²
Electron volt	1 eV	-	$1.602 \cdot 10^{-12} \text{ erg} = 11604 \text{ K}$

Summary Adiabatic Index and Exponent Saha Equation

Summary of Stellar Gas

• non-relativistic gas
$$u_{\rm gas} = \frac{3}{2} \frac{P_{\rm gas}}{\rho}$$

• relativistic gas (ions or photons)

$$u_{\mathsf{rad}} = 3 \frac{P_{\mathsf{rad}}}{\rho}$$

- adiabatic index
$$\gamma_{\rm ad} = \frac{{\rm d}\,\ln P}{{\rm d}\,\ln\rho} = \frac{\phi+1}{\phi} \label{eq:gamma}$$

Summary Adiabatic Index and Exponent Saha Equation

/□ ▶ < 글 ▶ < 글

Adiabatic Index and Exponent

• We define the adiabatic exponent, $\gamma_{\rm ad}$ and the adiabatic index, ϕ by

$$\gamma_{\mathsf{ad}} = \frac{\mathsf{d}\,\ln P}{\mathsf{d}\,\ln\rho} = \frac{\phi+1}{\phi}$$

hence we have a relation between gas pressure and density

$${\it P}={\it K_{ad}}
ho^{\gamma_{ad}}\propto
ho^{\gamma_{ad}}$$

Summary Adiabatic Index and Exponent Saha Equation

Saha Equation & Ionization

For a simple gas with one ionization stage we have

degree of ionization

$$x = \frac{n_+}{n_0 + n_+}$$

• the densities are related by the Saha Equation

$$\frac{n_{+} n_{\rm e^{-}}}{n_0} = \frac{g}{h^3} (2\pi m_{\rm e} k_{\rm B} T)^{3/2} e^{-\chi/k_{\rm B} T}$$

• the pressure is then

$$P = (1 + x)(n_0 + n_+)k_{\rm B}T = (1 + x)\mathcal{R}\rho T$$

• the resulting adiabatic index is

$$\gamma_{\mathsf{ad}} = \frac{5 + \left(\frac{5}{2} + \frac{\chi}{k_{\mathsf{B}}T}\right)^2 x(1-x)}{3 + \left[\frac{3}{2} + \left(\frac{3}{2} + \frac{\chi}{k_{\mathsf{B}}T}\right)^2\right] x(1-x)}$$

• For a fully ionized gas, on what properties of the gas depends the constant $K_{\rm ad}$ in

$$P = K_{ad} \rho^{\gamma_{ad}}$$
 ?

• 同 • • 三 • •

Output Books How does K_{ad} change during ionization? Compare the values before and after ionization.

- **→** → **→**

Overview

Recap

- Summary
- Adiabatic Index and Exponent
- Saha Equation

2 EOS & Opacity

- Equation of State from Pairs and Dissociation
- Energy Transport and Opacity

3 Summary

- Summary
- Build Your Own Star

Recap EOS & Opacity

Equation of State from Pairs and Dissociation Energy Transport and Opacity

- 4 同 6 4 日 6 4 日 6

э

Electron Equation of State Regimes

(4月) (1日) (1日)

Electron-Positron Pair Production

• At $T \gtrsim 1 \times 10^9$ K photon can produce electron-positron pairs, from the highest energy photons of the Planck spectrum, $h\nu > 2m_{\rm e}c^2$:

$$e^+ + e^- \rightleftharpoons \gamma$$

- This converts radiation energy into rest mass of pairs
- hence compression increases pressure less
- \Rightarrow adiabatic index $\gamma_{\rm ad}$ lower
- possible instability of star $(\gamma_{ad} < \frac{4}{3})$ "pair instability supernova" $(\gamma_{ad} \gtrsim \frac{4}{3}$ is needed for stability of stars, as we shall see later)

Recap EOS & Opacity

Equation of State from Pairs and Dissociation Energy Transport and Opacity

Electron-Positron Pair Production and Iron Dissociation

Kippenhahn & Weigert (1990)

Instability Regimes

adiabatic index < 4/3

Compression does not result in sufficient increase in pressure (gradient) to balance higher gravity at lower radius

e⁺/e⁻-Pair Instability

Internal gas energy is converted into e*/e⁻ rest mass (hard photons from tail of Planck spectrum)

Photo disintegration

Internal gas energy is used to unbind heavy nuclei into alpha particles and at higher temperature those into free nucleons

A 10

・ 同 ト ・ ヨ ト ・ ヨ

Iron Photo-Dissociation

• At very high temperatures in the stellar core, typically during the last stages of *massive* (and very massive) stars, including collapse of the iron core, iron can be dissociated, typically above $T > 7 \times 10^9$ K:

$$^{56}{
m Fe} + \gamma \rightleftharpoons 13 \, {
m ^4He} + 4$$
 n

- This takes 100 MeV
- $\bullet\,\Rightarrow\,{\rm gas}$ energy is used to unbind nucleus
- $\bullet\,$ takes (about) as much energy as was released before to burn ${}^{4}\mathrm{He}$ to ${}^{56}\mathrm{Fe}$
- $\bullet \ \Rightarrow \gamma_{\rm ad} \ {\rm drops}$
- \Rightarrow possible instability of star (collapse)

Recap EOS & Opacity

Equation of State from Pairs and Dissociation Energy Transport and Opacity

Electron-Positron Pair Production and Iron Dissociation

Kippenhahn & Weigert (1990)

Instability Regimes

adiabatic index < 4/3

Compression does not result in sufficient increase in pressure (gradient) to balance higher gravity at lower radius

e⁺/e⁻-Pair Instability

Internal gas energy is converted into e*/e⁻ rest mass (hard photons from tail of Planck spectrum)

Photo disintegration

Internal gas energy is used to unbind heavy nuclei into alpha particles and at higher temperature those into free nucleons

A 10

- 同 ト - ヨ ト - - ヨ ト

Helium Photo-Dissociation

• At even higher temperatures helium can be dissociated, typically above $\mathcal{T}\gtrsim 10^{10}\,{\rm K}:$

4
He + $\gamma \rightleftharpoons 2 n + 2 p$

- This takes $\sim 28\,\text{MeV}$ per ^4He
- ullet \Rightarrow again, gas energy is used to unbind nucleus
- $\bullet\,$ takes (about) as much energy as was released before to burn $4^1 {\rm H}$ to $\,^4 {\rm He}\,$

(not counting neutrino losses during hydrogen burning)

- $\Rightarrow \gamma_{\rm ad} \ {\rm drops}$
- \Rightarrow possible instability of star (collapse)

Recap EOS & Opacity

Equation of State from Pairs and Dissociation Energy Transport and Opacity

Helium and Iron Dissociation

Equation of State from Pairs and Dissociation Energy Transport and Opacity

伺 ト イ ヨ ト イ ヨ

Energy Transport Equation - Radiation Transport

Recap EOS & Opacity

• Define radiation flux H (per unit time, per unit area)

$$\mathrm{d}H = \mathrm{d}F/4\pi r^2$$

• amount of radiation absorbed in a slab of thickness dr is

$$\mathrm{d}H = -\kappa H\rho \mathrm{d}r$$

where κ is the *opacity* of the gas.

• for constant opacity and density, and assuming no heating or compression, we obtain the solution

$$H = H_0 e^{-\kappa \rho r}$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

Optical Depth and Stellar Radius

• The characteristic absorption length is therefore $\frac{1}{\kappa\rho}$ is also approximately the mean free path of the photon

Recap EOS & Opacity

• we define the quantity optical depth by

$$\mathrm{d}\tau = -\kappa\rho\,\mathrm{d}r$$

• define "photosphere" of star as where optical depth becomes of order unity (2/3):

$$\int_0^\infty \kappa \rho \, \mathrm{d} r$$

• on can show that in good approximation the radiation of a star can be described as surface with effective temperature $T_{\rm eff}$ given at the "effective" radius of the star, $R_{\rm eff}$ at $\tau = 2/3$

- A 3 N

Opacity Sources

The main contributions to opacity are

- electron scattering (Thompson scattering) (relativistic: Compton scattering)
- free-free absorption (interaction of free electron with atom) (reverse: bremsstrahlung)
- bound-free absorption (reverse: recombination)
- bound-bound absorption (reverse: de-excitation)

Equation of State from Pairs and Dissociation Energy Transport and Opacity

Opacity Law

- opacity is function of T, ρ , composition
- we may parameterize

$$\kappa = \kappa_0(X) \, \rho^a T^b$$

• electron scattering (Thompson scattering)

$$\kappa_{
m es} = rac{\kappa_{
m es,0}}{\mu_{
m e}} pprox rac{1}{2}(1+X)\kappa_{
m es,0}$$

 $\kappa_{\mathsf{es},0} = 0.4\,\mathrm{cm}^2\,\mathrm{g}^{-1}$, a=b=0

• free-free scattering (Kramers opacity law)

$$\kappa_{\rm ff} = \frac{\kappa_{\rm ff,0}}{\mu_{\rm e}} \left\langle \frac{Z^2}{A} \right\rangle \rho T^{-7/2} \approx \frac{1}{2} \kappa_{\rm ff,0} (1+X) \left\langle \frac{Z^2}{A} \right\rangle \rho T^{-7/2}$$

$$\kappa_{\rm ff,0} = 7.5 \times 10^{22} \,\rm cm^2 \, g^{-1}, \ a = 1, \ b = -7/2$$

EOS & Opacity

Equation of State from Pairs and Dissociation Energy Transport and Opacity

< 同 ▶

→ 3 → < 3</p>

э

Opacity

Summary Build Your Own Star

- ₹ 🖬 🕨

Overview

Recap

- Summary
- Adiabatic Index and Exponent
- Saha Equation

2 EOS & Opacity

- Equation of State from Pairs and Dissociation
- Energy Transport and Opacity

3 Summary

- Summary
- Build Your Own Star

Equation of State and Opacity

- \bullet electron positron pair production for $\mathcal{T}\gtrsim 10^9\,\mathrm{K}$
- $\bullet\,$ iron dissociation for $\,T\gtrsim7{\times}10^9\,{\rm K}$
- $\bullet\,$ helium dissociation for $\,T\gtrsim 10^{10}\,{\rm K}$
- optical depth

$$\mathrm{d}\tau = -\kappa\rho\,\mathrm{d}r$$

• electron scattering (Thompson scattering)

$$\kappa_{
m es} = rac{\kappa_{
m es,0}}{\mu_{
m e}} pprox rac{1}{2} \kappa_{
m es,0} (1+X)$$

・ 同 ト ・ ヨ ト ・ ヨ

$$\kappa_{\mathrm{es},0} = 0.4\mathrm{cm}^2\,\mathrm{g}^{-1}$$

Summary Build Your Own Star

□ > < = > <

Stellar Evolution Project

- Bill Paxton's EZ Stellar Evolution code http://www.kitp.ucsb.edu/~paxton/EZ-intro.html
- Uses Linux gfortran
- g95 FORTRAN compiler can be downloaded for most platforms.

http://www.g95.org