Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger $1,2,3$

¹School of Physics and Astronomy University of Minnesota

²Theoretical Astrophysics Group, T-6 Los Alamos National Laboratory

³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Announcement

The 3rd Annual Irving and Edythe MISEL FAMILY LECTURE

Public Lecture Tuesday, September 23, 2008 7:00pm

Van Vleck Auditorium Room 150, Tate Lab of Physics

Physics and Astronomy Colloquium **The Cosmological Tests** Wednesday, September 24, 2008 3:35pm

Room 131 Tate Lab of Physics

 \sim \sim

45 \sim 医单头 化 \equiv つへへ

For more informa umn.edu/misel

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 13: [Radiation Tran](#page-0-0)sport in Stars

Announcement

Burning Neutron Stars Alexander Heger Friday, September 26, 15:00

The probably by far most common thermonuclear explosion to occur in nature is the explosion of a thin layer of material, about the height of the physics building, that has accumulated on the surface of a neutron star, about the size of Minneapolis, in a binary star system - Type I X-ray bursts. I show theoretical models for such outbursts, their very specific mode of nuclear burning unheard of in any other stellar system, as well as their much bigger cousins, the superbursts. I will discuss our current difficulty in understanding how those are made, and possible solutions.

 $\langle \oplus \rangle$ \rightarrow $\langle \oplus \rangle$ \rightarrow $\langle \oplus$

Agenda

- 2 [Energy Transport Equation](#page-6-0)
	- [Radiative Energy Transport](#page-8-0)
	- [Conductive Energy Transport](#page-17-0)
	- [Rosseland Mean Opacity](#page-19-0)

3 [Summary](#page-21-0)

• [Summary](#page-22-0)

Overview

[Energy Transport Equation](#page-6-0) • [Radiative Energy Transport](#page-8-0) • [Conductive Energy Transport](#page-17-0)

• [Rosseland Mean Opacity](#page-19-0)

[Summary](#page-21-0)

• [Summary](#page-22-0)

 \leftarrow

造 \sim QQ

Equation of State and Opacity

- **e** electron positron pair production for $T \ge 10^9$ K
- iron dissociation for $T \gtrsim 7 \times 10^9$ K
- helium dissociation for $T \ge 10^{10}$ K
- optical depth

$$
d\tau = -\kappa \rho \, dr
$$

• electron scattering (Thompson scattering)

$$
\kappa_{\rm es} = \frac{\kappa_{\rm es,0}}{\mu_{\rm e}} \approx \frac{1}{2} \kappa_{\rm es,0} (1+X)
$$

A & Y B & Y B &

$$
\kappa_{\text{es},0}=0.4\text{cm}^2\,\text{g}^{-1}
$$

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

 \sim \sim

 \sim \rightarrow \equiv \rightarrow

A

 209

Overview

2 [Energy Transport Equation](#page-6-0) • [Radiative Energy Transport](#page-8-0)

- [Conductive Energy Transport](#page-17-0)
- [Rosseland Mean Opacity](#page-19-0)

[Summary](#page-21-0)

• [Summary](#page-22-0)

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Stellar Structure Equations - Temperature Gradient

stationary terms time-dependent terms

$$
\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho} \tag{1}
$$
\n
$$
\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2} \tag{2}
$$
\n
$$
\frac{\partial F}{\partial m} = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} - c_{\rho} \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t} \tag{3}
$$
\n
$$
\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right] \tag{4}
$$
\n
$$
\frac{\partial X_i}{\partial t} = f_i (\rho, T, \mathbf{X}) \tag{5}
$$

where $\textbf{X} = \{X_1, X_2, \ldots, X_i, \ldots\}$.

 $2Q$

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Basic Estimates

- mean free path $l_{\sf ph} = \frac{1}{\kappa_{\sf d}}$ κρ
- for sun $\bar{\rho_\odot} = \frac{3\,\rm M_\odot}{4\pi R_\odot}$ $\frac{3 \text{ M}_{\odot}}{4 \pi \text{R}_{\odot}^3} = 1.4 \text{ g cm}^{-3}$, $\kappa \approx 0.4$ cm 2 g $^{-1}$ $\Rightarrow I_{\text{ph}} = 2 \text{ cm}$
- \bullet using $T_c \approx 10^7$ K. $T_{surf} \approx 10^4$ K we may estimate

$$
\frac{\Delta\,T}{\Delta\,r} \approx \frac{T_{\rm c}-T_{\rm surf}}{R_\odot} \approx 1.4{\times}10^{-4}\,{\rm K\,cm^{-1}}
$$

 \sim 一本 重 下

 \sim \sim

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R} is a set of \mathbb{R} is a set of \mathbb{R} is

つくい

Basic Estimates

- note that $l_{\rm ph}/R_{\odot} \approx 3 \times 10^{-11}$
- o on a mean free path scale we have a temperature variation of Δ $T \approx$ $l_{\sf ph} \left(\frac{\sf d}{\sf d}{\it r} \right)$ $\frac{\text{d} T}{\text{d} r}$) $\approx 3 \times 10^{-4}$ K
- with $u\sim\,T^4$ the anisotropy of radiation at $\,T=10^7\,\mathsf{K}$ is

$$
4\frac{\Delta\mathcal{T}}{\mathcal{T}}\sim 10^{-10}
$$

- $\bullet \Rightarrow$ very close to thermal equilibrium
- at $\mathcal{T}=10^7\,\mathsf{K}$ this anisotropy is still 10^3 times bigger than flux at surface of $6{\times}10^{10}$ erg s $^{-1}$ cm $^{-2}$
- $\bullet \Rightarrow$ even small anisotropy can carry large flux!

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

4 17 18

<何> <ヨ> <ヨ

つくい

Diffusion of Radiative Energy

• diffusive flux given by

$$
\mathbf{j}=-D\,\nabla n
$$

• Diffusion coefficient

$$
D=\frac{1}{3}v l_{\sf ph}
$$

determined by mean free path $l_{\rm ph}$ and velocity v of the particles

- \bullet for radiative flux H we replace:
	- *n* by energy density U (per unit volume), $U = aT⁴$, and
	- v by the speed of light, c

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Diffusion of Radiative Energy

we are only interested in the radial component we may replace

\n- $$
H_r = |\mathbf{H}| = H
$$
\n- $\nabla U \rightarrow \frac{\partial U}{\partial r}$
\n

• we the obtain

$$
\frac{\partial U}{\partial r} = 4aT^3 \frac{\partial T}{\partial r}
$$

a and for the flux

$$
H = -\frac{4ac}{3} \frac{T^3}{\kappa \rho} \frac{\partial T}{\partial r}
$$

o or in mass coordinate

$$
H = -\frac{ac}{3\pi} \frac{T^3}{\kappa \rho^2 r^2} \frac{\partial T}{\partial m}
$$

 \sim

人名英格兰人姓氏

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Heat Conduction

• formally we can write this as a heat conduction equation

$$
\mathbf{H} = -k_{\text{rad}} \nabla T
$$

where we define

$$
k_{\rm rad} = \frac{4ac}{3} \frac{T^3}{\kappa \rho}
$$

using $F = 4\pi r^2 H$ we can solve for

$$
\frac{\partial T}{\partial r} = -\frac{3}{16\pi ac} \frac{\kappa \rho F}{r^2 T^4}
$$

or, in mass coordinate

$$
\frac{\partial T}{\partial m} = -\frac{3}{64\pi ac} \frac{\kappa F}{r^4 T^4}
$$

母 ト イヨ ト イ

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Radiative Energy Transport

• if we divide by the equation for hydrostatic equilibrium

$$
\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}
$$

we obtain

$$
\frac{\partial T}{\partial m} = \frac{3}{16\pi acG} \frac{\kappa F}{mT^3} \frac{\partial P}{\partial m}
$$

we may rewrite the temperature gradient due to radiation as

$$
\nabla_{\rm rad} = \left(\frac{\text{d} \ln T}{\text{d} \ln P}\right)_{\rm rad} = \frac{3}{16\pi \text{acG}} \frac{\kappa FP}{mT^4}
$$

and obtain

$$
\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla_{\text{rad}}
$$

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$

 Ω

a mills

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

and in

- ④ インド ミット イコート

つくへ

∍

using the momentum equation including acceleration

find the appropriate expression for

∂T ∂m

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Radiative Energy Transport

• if we divide by the momentum equation

$$
\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2} = -\frac{Gm}{4\pi r^4} \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right]
$$

we obtain

$$
\frac{\partial T}{\partial m} = \frac{3}{16\pi acG} \frac{\kappa F}{mT^3} \frac{\partial P}{\partial m} \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right]^{-1}
$$

• defining

$$
\nabla_{\text{rad}} = \left(\frac{\text{d} \ln T}{\text{d} \ln P}\right)_{\text{rad}} = \frac{3}{16\pi \text{acG}} \frac{\kappa FP}{mT^4} \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2}\right]^{-1}
$$
\nwe write\n
$$
\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla_{\text{rad}} \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2}\right]
$$

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 13: [Radiation Tran](#page-0-0)sport in Stars

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Conductive Energy Transport

• so far we only dealt with the radiative flux

 $H = H_{rad}$

we can write the conductive flux in the same form

$$
\mathbf{H}_{\rm cd} = -k_{\rm cd} \nabla T
$$

• and add both up

$$
\mathbf{H} = \mathbf{H}_{\text{rad}} + \mathbf{H}_{\text{cd}} = -(k_{\text{rad}} + k_{\text{cd}}) \nabla T
$$

 \sim \sim

 \sim 医毛囊 医心脏

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Conductive Energy Transport

• we can also formally write

$$
k_{\rm cd} = \frac{4ac}{3} \frac{T^3}{\kappa_{\rm cd}\rho}
$$

• and then have for the *total* flux

$$
\mathbf{H} = -\frac{4\pi ac}{3} \frac{\mathcal{T}^3}{\rho} \left(\frac{1}{\kappa_{\text{rad}}} + \frac{1}{\kappa_{\text{cd}}} \right) \nabla \mathcal{T}
$$

• and can define

$$
\frac{1}{\kappa} = \frac{1}{\kappa_{\text{rad}}} + \frac{1}{\kappa_{\text{cd}}}
$$

to recover the original form

$$
\mathbf{H}=-\frac{4\pi ac}{3}\frac{T^3}{\kappa\rho}\,\nabla\,T
$$

 \sim \sim

 \sim - 4 国 8 14

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Rosseland Mean Opacity

- **•** for radiative transport, all quantities have to be considered a function of frequency, $l_{\nu, \text{ph}}$, H_{ν} , D_{ν} , U_{ν} , κ_{ν} , etc.
- we then write the flux as

$$
H_{\nu} = -D_{\nu} \nabla U_{\nu}
$$

and

$$
D_{\nu} = \frac{1}{3}c I_{\nu, \text{ph}} = \frac{c}{3\kappa_{\nu}\rho}
$$

• and the energy density as

$$
U_{\nu} = \frac{4\pi}{c} B(\nu, T) = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{h\nu/k_B T} - 1}
$$

医阿雷氏阿雷氏

つくい

where $B(\nu, T)$ is the Planck function for intensity

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Rosseland Mean Opacity

• we may hence write

$$
\nabla U_{\nu} = \frac{4\pi}{c} \frac{\partial B}{\partial T} \nabla T
$$

• we obtain the total flux by integration over all frequencies

$$
H = -\left[\frac{4\pi}{3\rho}\int_0^\infty \frac{1}{\kappa_\nu} \frac{\partial B}{\partial T} \, \mathrm{d}\nu\right] \nabla T
$$

• this is a conduction equation

$$
\mathbf{H} = -k_{\text{rad}} \nabla \mathbf{T}
$$

with

$$
k_{\rm rad} = \frac{4\pi}{3\rho} \int_0^\infty \frac{1}{\kappa_\nu} \frac{\partial B}{\partial T} \, \mathrm{d}\nu
$$

化重 经间

[Radiative Energy Transport](#page-8-0) [Conductive Energy Transport](#page-17-0) [Rosseland Mean Opacity](#page-19-0)

Rosseland Mean Opacity

a and from

$$
k_{\rm rad} = \frac{4ac}{3} \frac{T^3}{\kappa \rho}
$$

we can define the Rosseland mean opacity

$$
\frac{1}{\kappa} = \frac{\pi}{\mathsf{acT}^3} \int_0^\infty \frac{1}{\kappa_\nu} \frac{\partial B}{\partial T} \,\mathrm{d}\nu
$$

o since

$$
\frac{acT^3}{\pi} = \int_0^\infty \frac{\partial B}{\partial T} \, \mathrm{d} \nu
$$

the Rosseland mean opacity is the harmonic mean.

• considering

$$
H_{\nu} = -\left(\frac{1}{\kappa_{\nu}}\frac{\partial B}{\partial T}\right)\frac{4\pi}{3\rho}\nabla T
$$

we see that frequencies of maximum energy flux are favored in the mean. おくぼう

つへへ

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 13: [Radiation Tran](#page-0-0)sport in Stars

Overview

- **[Energy Transport Equation](#page-6-0) • [Radiative Energy Transport](#page-8-0)**
	- [Conductive Energy Transport](#page-17-0)
	- [Rosseland Mean Opacity](#page-19-0)

 \leftarrow

4. 重 \sim QQ

Recap [Energy Transport Equation](#page-6-0) [Summary](#page-21-0)

[Summary](#page-22-0)

Summary

• energy flux and effective opacity

$$
\mathbf{H} = -\frac{4\pi ac}{3}\frac{T^3}{\kappa \rho}\nabla T\,,\quad \frac{1}{\kappa} = \frac{1}{\kappa_{\sf rad}} + \frac{1}{\kappa_{\sf cd}}
$$

• temperature gradient in hydrostatic star

$$
\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla
$$

• where for radiation we have

$$
\nabla = \nabla_{\text{rad}} = \left(\frac{\text{d} \ln T}{\text{d} \ln P}\right)_{\text{rad}} = \frac{3}{16\pi \text{acG}} \frac{\kappa FP}{mT^4}
$$

• Rosseland mean opacity

$$
\frac{1}{\kappa} = \frac{\pi}{\mathsf{ac}T^3} \int_0^\infty \frac{1}{\kappa_\nu} \frac{\partial B}{\partial T} \,\mathrm{d}\nu
$$