Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Theoretical Astrophysics Group, T-6 Los Alamos National Laboratory

³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

つくへ

Announcement

The 3rd Annual Irving and Edythe MISEL FAMILY LECTURE

Public Lecture Tuesday, September 23, 2008 7:00pm

Van Vleck Auditorium Room 150, Tate Lab of Physics **Physics and Astronomy** Colloquium **The Cosmological Tests** Wednesday, September 24, 2008 3:35pm Room 131 Tate Lab of Physics

> 45 \sim 一心語 \sim

つくへ

.
For more informa limn adulmical/

 \sim m \sim

Burning Neutron Stars Alexander Heger Friday, September 26, 15:00

The probably by far most common thermonuclear explosion to occur in nature is the explosion of a thin layer of material, about the height of the physics building, that has accumulated on the surface of a neutron star, about the size of Minneapolis, in a binary star system - Type I X-ray bursts. I show theoretical models for such outbursts, their very specific mode of nuclear burning unheard of in any other stellar system, as well as their much bigger cousins, the superbursts. I will discuss our current difficulty in understanding how those are made, and possible solutions.

つくへ

- [Summary](#page-5-0)
- [Optical depth and Mean Free Path](#page-6-0)

任

 209

 \sim \sim

 \sim 4 重 \sim QQ

- [Summary](#page-5-0)
- [Optical depth and Mean Free Path](#page-6-0)

Summary

• energy flux and effective opacity

$$
\mathbf{H} = -\frac{4\pi ac}{3}\frac{\mathcal{T}^3}{\kappa \rho} \nabla \mathcal{T} \,, \quad \frac{1}{\kappa} = \frac{1}{\kappa_{\mathsf{rad}}} + \frac{1}{\kappa_{\mathsf{cd}}}
$$

• temperature gradient in hydrostatic star

$$
\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla
$$

• where for radiation we have

$$
\nabla = \nabla_{\text{rad}} = \left(\frac{\text{d} \ln T}{\text{d} \ln P}\right)_{\text{rad}} = \frac{3}{16\pi \text{acG}} \frac{\kappa FP}{mT^4}
$$

• Rosseland mean opacity

$$
\frac{1}{\kappa} = \frac{\pi}{acT^3} \int_0^\infty \frac{1}{\kappa_\nu} \frac{\partial B}{\partial T} \, \mathrm{d}\nu
$$

 \equiv

つくい

Recap [Stellar Structure Equations](#page-7-0)

[Optical depth and Mean Free Path](#page-6-0)

A . . 2 . . 2 .

 Ω

Notes on Photon Mean Free Path an Optical Depth

recall

$$
I_{\sf ph} = \frac{1}{\kappa \rho} \quad \text{and} \quad \tau(r) = -\int_r^{\infty} \kappa \rho \, dr
$$

 $\bullet \Rightarrow \tau$ is approximation for number of mean free paths

• diffusion time is proportional

$$
\tau_{\rm diff} \sim \frac{\rm length^2}{D}
$$

- Questions:
	- **1** What is the optical depth at the center of the sun? (assume $l_{\text{ph}} = 2 \text{ cm}$)
	- **2** How long does a photon take to get from the center to the surface of the sun?

 \leftarrow

 \mathbf{h} 4. 重 \mathcal{V} QQ

[Recap](#page-4-0)

- [Summary](#page-5-0)
- [Optical depth and Mean Free Path](#page-6-0)

Recap [Stellar Structure Equations](#page-7-0) [Energy Equation](#page-8-0)

Stellar Structure Equations - Energy Equation

stationary terms time-dependent terms

$$
\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho} \tag{1}
$$
\n
$$
\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2} \tag{2}
$$
\n
$$
\frac{\partial F}{\partial m} = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} - c_{\rho} \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t} \tag{3}
$$
\n
$$
\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right] \tag{4}
$$
\n
$$
\frac{\partial X_i}{\partial x} = f(x, T, \mathbf{X}) \tag{5}
$$

$$
\frac{\partial N_i}{\partial t} = f_i(\rho, T, \mathbf{X})
$$
 (5)

where $\mathsf{X} = \{X_1, X_2, \ldots, X_i, \ldots\}$.

 QQ

э

Stellar Structure Equations - Energy Equation

Recap [Stellar Structure Equations](#page-7-0) [Energy Equation](#page-8-0)

• Recall the energy equation in the form

$$
\frac{\partial F}{\partial m} = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} + \dot{u} + P \frac{\partial}{\partial t} \left(\frac{1}{\rho} \right) = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} + \dot{u} - \frac{P}{\rho^2} \frac{\partial \rho}{\partial t}
$$

• recall first law of thermodynamics

$$
dq = du + Pd\left(\frac{1}{\rho}\right) = du - \frac{P}{\rho^2}d\rho
$$

• assume general equation of state

$$
\rho = \rho(P, T), \quad u = u(\rho, T)
$$

つくい

Recap [Stellar Structure Equations](#page-7-0) [Energy Equation](#page-8-0)

Stellar Structure Equations - Energy Equation - EOS

• Defining

$$
\alpha = \left(\frac{\partial \ln \rho}{\partial \ln P}\right)_T, \quad \delta = -\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_P
$$

• we can then write the equation of state in the form

$$
\frac{\mathrm{d}\rho}{\rho} = \left(\frac{\partial \rho}{\partial P}\right)_{T} \frac{\mathrm{d}P}{\rho} + \left(\frac{\partial \rho}{\partial T}\right)_{P} \frac{\mathrm{d}T}{\rho} = \alpha \frac{\mathrm{d}P}{P} - \delta \frac{\mathrm{d}T}{T}
$$

• the specific heats are defined as

$$
c_P = \left(\frac{dq}{dT}\right)_P = \left(\frac{\partial u}{\partial T}\right)_P - \frac{P}{\rho^2} \left(\frac{\partial \rho}{\partial T}\right)_P
$$

$$
c_V = \left(\frac{dq}{dT}\right)_V = \left(\frac{\partial u}{\partial T}\right)_V
$$

つくい

(Note: keeping volume V co[nsta](#page-9-0)nt is same as keeping density ρ constant[\)](#page-11-0)

Recap [Stellar Structure Equations](#page-7-0) [Energy Equation](#page-8-0)

Stellar Structure Equations - Energy Equation

• One can show that

$$
c_P = c_V + \frac{P\delta^2}{\rho T\alpha}
$$

• after some algebra and calculus

$$
dq = du + Pd\left(\frac{1}{\rho}\right) = du - \frac{P}{\rho^2}d\rho
$$

becomes

$$
dq = c_P dT + \frac{\delta}{\rho} dP
$$

• we then obtain the Energy equation in the form

$$
\frac{\partial F}{\partial m} = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} - c_{P} \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}
$$

つくい

0 Reference: Kippenhahn & Weigert, 1990, pp. 19-21