# Astrophysics I: Stars and Stellar Evolution AST 4001

#### Alexander Heger<sup>1,2,3</sup>

#### <sup>1</sup>School of Physics and Astronomy University of Minnesota

<sup>2</sup>Theoretical Astrophysics Group, T-6 Los Alamos National Laboratory

<sup>3</sup>Department of Astronomy and Astrophysics University of California at Santa Cruz

#### Stars and Stellar Evolution, Fall 2008

4 3 b

# Overview



- Local Stability
- Convection
- 2 Advanced Nuclear Burning Stages
   Overview Origin of the Elements
   Helium Burning and Beyond

3

Local Stability Convection

# Summary on Local Stability

• Convection according to Ledoux Criterion when

$$abla_{\mathsf{rad}} > 
abla_{\mathsf{ad}} + rac{arphi}{\delta} 
abla_{\mu}$$

• Convection according to Schwarzschild Criterion when

$$\nabla_{\text{rad}} > \nabla_{\text{ad}}$$

Semiconvection when

$$rac{arphi}{\delta}
abla_{\mu} > 0\,, 
abla_{\mathsf{rad}} < 
abla_{\mathsf{ad}} + rac{arphi}{\delta}
abla_{\mu}$$

• Thermohaline convection when

$$\frac{\varphi}{\delta} \nabla_{\mu} < 0 \,, \nabla_{\mathsf{rad}} < \nabla_{\mathsf{ad}} + \frac{\varphi}{\delta} \nabla_{\mu}$$

Recap Advanced Nuclear Burning Stages

Local Stability Convection

# Summary on Convection

• In the stellar interior bubbles rise close to adiabatically, and the temperature gradient in the convection zone is close to adiabatic, but slightly steeper

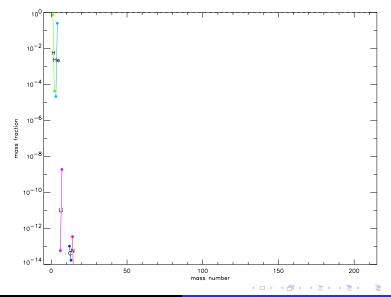
$$rac{\mathrm{d}S}{\mathrm{d}r}\lesssim 0$$

- The four temperature gradients in convection zone are in order of increasing steepness
  - adiabatic temperature gradient
  - temperature gradient of rising bubble (i.e., "up-flow")
  - temperature gradient of surrounding media
  - (factious) radiative temperature gradient
- Convection zones are "well mixed" close to chemically homogeneous

.⊒ . ►



## Recap

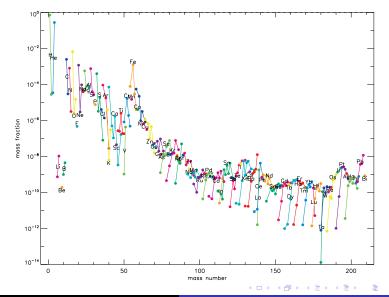

- Local Stability
- Convection

#### 2 Advanced Nuclear Burning Stages

- Overview Origin of the Elements
- Helium Burning and Beyond

Overview – Origin of the Elements Helium Burning and Beyond

## Composition of the Universe after the Big Bang




Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Lecture 18: Advanced Nuclear Burning Stages

Overview – Origin of the Elements Helium Burning and Beyond

## The Composition of the Sun



Stars and Stellar Evolution - Fall 2008 - Alexander Heger

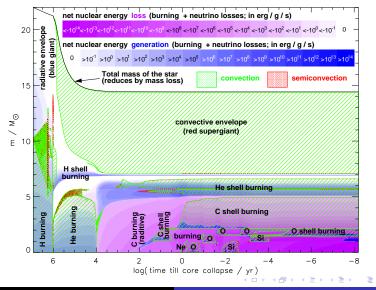
Lecture 18: Advanced Nuclear Burning Stages

Overview – Origin of the Elements Helium Burning and Beyond

## **Overview** - Burning Phases in Stars

| $20{ m M}_{\odot}$ star |                 |                                                |                          |                 |                                                                                    |  |  |
|-------------------------|-----------------|------------------------------------------------|--------------------------|-----------------|------------------------------------------------------------------------------------|--|--|
| Fuel                    | Main<br>Product | Secondary<br>Product                           | T<br>(10 <sup>9</sup> K) | Time<br>(yr)    | Main<br>Reaction                                                                   |  |  |
| Н                       | He              | <sup>14</sup> N                                | 0.02                     | 10 <sup>7</sup> | $4 H \xrightarrow{CNO} {}^{4}He$                                                   |  |  |
| He                      | 0, C            | <sup>18</sup> O, <sup>22</sup> Ne<br>s-process | 0.2                      | 10 <sup>6</sup> | 3 He <sup>4</sup> → <sup>12</sup> C<br><sup>12</sup> C(α,γ) <sup>16</sup> O        |  |  |
| C                       | Ne,<br>Mg       | Na                                             | 0.8                      | 10 <sup>3</sup> | <sup>12</sup> C + <sup>12</sup> C                                                  |  |  |
| Ne                      | O, Mg           | AI, P                                          | 1.5                      | 3               | $^{20}$ Ne( $\gamma, \alpha$ ) $^{16}$ O $^{20}$ Ne( $\alpha, \gamma$ ) $^{24}$ Mg |  |  |
| O×                      | Si, S           | CI, Ar,<br>K, Ca                               | 2.0                      | 0.8             | <sup>16</sup> <b>O</b> + <sup>16</sup> <b>O</b>                                    |  |  |
| Si, Ŝ                   | Fe              | Ti, V, Cr,<br>Mn, Co, Ni                       | 3.5                      | 0.02            | <sup>28</sup> Si(γ,α <b>)</b>                                                      |  |  |

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 18: Advanced Nuclear Burning Stages


(\*) Q (?)

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Overview – Origin of the Elements Helium Burning and Beyond

## **Overview - Burning Phases in the Stellar Interior**



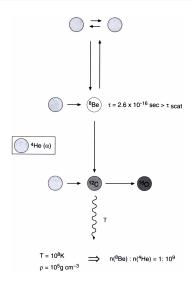
Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 18: Advan

Overview – Origin of the Elements Helium Burning and Beyond

## Stellar Structure Equations - Nuclear Burning

stationary terms

time-dependent terms


$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$
(1)
$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}$$
(2)
$$\frac{\partial F}{\partial m} = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}$$
(3)
$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \left[ 1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right]$$
(4)

$$\frac{\partial X_i}{\partial t} = f_i(\rho, T, \mathbf{X})$$
(5)

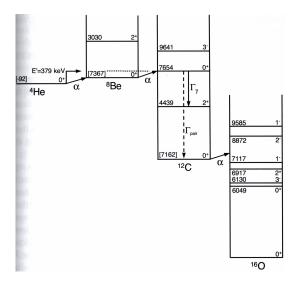
where  $\boldsymbol{\mathsf{X}} = \{X_1, X_2, \ldots, X_i, \ldots\}$  .

Overview – Origin of the Elements Helium Burning and Beyond

# The Triple- $\alpha$ Reaction



Step 1: <sup>4</sup>He + <sup>4</sup>He  $\rightleftharpoons$  <sup>8</sup>Be Built up equilibrium abundance of <sup>8</sup>Be Lifetime of <sup>8</sup>Be is only 2.6 × 10<sup>-16</sup> s!


Step 2: <sup>8</sup>Be + <sup>4</sup>He  $\rightarrow$  <sup>12</sup>C +  $\gamma$ 

 $Q_{3lpha}=$  7.275 MeV $<\sigma v> \propto 
ho^2 T^{40}$ 

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 18: Advanced Nuclear Burning Stages

Overview – Origin of the Elements Helium Burning and Beyond

## Helium Burning level scheme



Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 18: Advanced Nuclear Burning Stages

## Helium Burning and Beyond

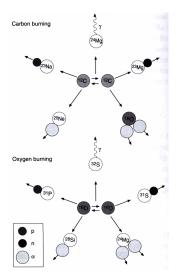
向 ト イヨ ト イヨト

# Additional Reactions of Helium Burning

## Oxygen Production

<sup>4</sup>He + <sup>12</sup>C  $\rightarrow$  <sup>16</sup>O +  $\gamma$ 

 $Q = 7.162 \, \text{MeV}$ 


 $\langle \sigma v \rangle \propto \rho T^{40}$ 

The final abundance of carbon is set by the competition of  $3\alpha$  and  $^{12}C(\alpha, \gamma)^{16}O$  reactions;

The production of <sup>16</sup>O can only start when a sufficient amount of <sup>12</sup>C has been made.

Overview – Origin of the Elements Helium Burning and Beyond

## Carbon and Oxygen Burning



| Carbo            | n Burning                                   |        |
|------------------|---------------------------------------------|--------|
| $^{12}C + ^{12}$ | $C \rightarrow {}^{24}Mg + \gamma$ ,        | 13.931 |
|                  | $\rightarrow {}^{23}Mg + n$ ,               | -2.605 |
|                  | $\rightarrow {}^{23}\text{Na} + p$ ,        | 2.238  |
|                  | $\rightarrow {}^{20}\text{Ne} + \alpha$ ,   | 4.616  |
|                  | $\rightarrow$ <sup>16</sup> O +2 $\alpha$ , | -0.114 |
| •                | 0 101414                                    |        |

Average  $Q = 13 \,\mathrm{MeV}$ 

### Oxygen Burning <sup>16</sup>O + <sup>16</sup>O $\rightarrow$ <sup>32</sup>S + $\gamma$ , 16.541 $\rightarrow$ <sup>31</sup>P + p , 7.677 $\rightarrow$ <sup>31</sup>S + n , 1.453 $\rightarrow$ <sup>28</sup>Si + $\alpha$ , 9.593 $\rightarrow$ <sup>24</sup>Mg + $2\alpha$ , -0.393 Average Q = 16 MeV

## Neon Burning

Neon burning proceeds by a combination of photo-disintegrations and  $\alpha$  captures:

 $^{20}\mathrm{Ne} + \gamma \rightarrow {}^{16}\mathrm{O} + {}^{4}\mathrm{He} \ , \quad \textit{Q} = -4.73 \, \mathrm{MeV} \label{eq:eq:eq:eq:eq:eq:eq:eq:eq:eq}$ 

This reaction dominates over the inverse reaction known from helium burning for  $\mathcal{T}>1.5\times10^9\,\text{K}.$ 

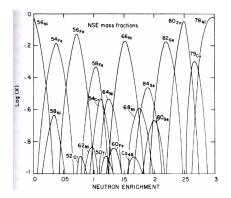
Subsequently, the  ${}^4{\rm He}$  is captured on another  ${}^{20}{\rm Ne}$  nucleus:  ${}^{20}{\rm Ne}+{}^4{\rm He} \to {}^{24}{\rm Mg}+\gamma.$ 

The net result is  $2^{20}$ Ne +  $\gamma \rightarrow {}^{16}$ O +  ${}^{24}$ Mg +  $\gamma$  , Q = +4.583 MeV

## "Silicon" Burning

Actually, often we have more sulfur in the star than there is silicon, but it is custom to call this phase "silicon burning".

Typical burning temperature is  $3 \dots 3.5 \times 10^9$  K.


Similar to neon burning, silicon burning proceeds as a series of photo-disintegration reactions, mostly,  $(\gamma, \alpha)$ , and helium capture reactions,  $(\alpha, \gamma)$  to build up iron group elements.

$$(\gamma, \alpha) \rightleftharpoons (\alpha, \gamma)$$

At the high T and  $\rho$  of these conditions, also *weak reactions* occur, converting protons into neutrons and leading to a *neutron excess*. This allows to actually make stable iron isotopes.

Overview – Origin of the Elements Helium Burning and Beyond

# Beyond Silicon/Sulfur Burning



NSE distribution for  $T = 3.5 \times 10^9$  K,  $\rho = 10^7$  g/cm<sup>3</sup>

After silicon burning T and  $\rho$  is so high that the nuclei are in **nuclear statistical equilibrium**, i.e., the reactions are fast compared to the evolution time-scale of the star, and the abundance distribution of the nuclei is given by a *Saha* equation.

# Summary of Energetics

| Nuclear Fuel | Process  | T <sub>threshold</sub><br>10 <sup>6</sup> K | Products      | Energy per<br>Nucleon (MeV) |
|--------------|----------|---------------------------------------------|---------------|-----------------------------|
| Н            | p-p      | ~4                                          | He            | 6.55                        |
| Н            | CNO      | 15                                          | He            | 6.25                        |
| He           | 3α       | 100                                         | C, 0          | 0.61                        |
| С            | C + C    | 600                                         | O, Ne, Na, Mg | 0.54                        |
| 0            | 0 + 0    | 1000                                        | Mg, S, P, Si  | ~0.3                        |
| Si           | Nuc. eq. | 3000                                        | Co, Fe, Ni    | < 0.18                      |