Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

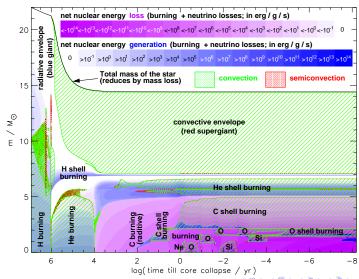
¹School of Physics and Astronomy University of Minnesota

²Theoretical Astrophysics Group, T-6 Los Alamos National Laboratory

³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Overview


- Recap
 - Burning Phases in Stars
 - Helium Burning and Beyond

Overview - Burning Phases in Stars

 $20\,M_{\odot}\,\,\text{star}$

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	4 H → ^{CNO} 4He
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ \rightarrow ¹² C ¹² C(α , γ) ¹⁶ O
C A	Ne, Mg	Na	8.0	10³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	20 Ne $(\gamma,\alpha)^{16}$ O 20 Ne $(\alpha,\gamma)^{24}$ Mg
0	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si, Š	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

Overview - Burning Phases in the Stellar Interior

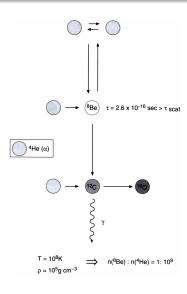
Stellar Structure Equations - Nuclear Burning

stationary terms time-dependent terms

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho} \tag{1}$$

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2} \tag{2}$$

$$\frac{\partial F}{\partial m} = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} - c_{P} \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}$$
 (3)


$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right] \tag{4}$$

$$\frac{\partial X_i}{\partial t} = f_i(\rho, T, \mathbf{X}) \tag{5}$$

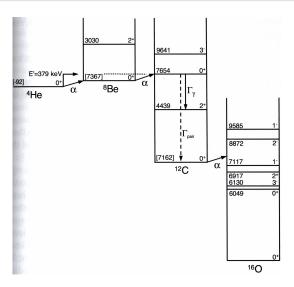
where
$$\mathbf{X} = \{X_1, X_2, \dots, X_i, \dots\}$$
 .

The Triple- α Reaction

Step 1:

 4 He + 4 He \rightleftharpoons 8 Be

Built up equilibrium abundance of 8 Be Lifetime of 8 Be is only 2.6×10^{-16} s!


Step 2:

$$^{8}\mathrm{Be} + {^{4}\mathrm{He}}
ightarrow {^{12}\mathrm{C}} + \gamma$$

$$Q_{3\alpha} = 7.275 \, \text{MeV}$$

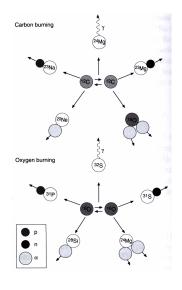
$$<\sigma v>\propto \rho^2 T^{40}$$

Helium Burning level scheme

Additional Reactions of Helium Burning

Oxygen Production

$$^{4}\text{He} + ^{12}\text{C} \rightarrow ^{16}\text{O} + \gamma$$


$$Q = 7.162 \,\mathrm{MeV}$$

$$\langle \sigma v \rangle \propto \rho T^{40}$$

The final abundance of carbon is set by the competition of 3α and $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reactions;

The production of ^{16}O can only start when a sufficient amount of ^{12}C has been made.

Carbon and Oxygen Burning

Carbon Burning

$$^{12}\text{C} + ^{12}\text{C} \rightarrow ^{24}\text{Mg} + \gamma \quad , \quad 13.931$$

$$\rightarrow ^{23}\text{Mg} + n \quad , \quad -2.605$$

$$\rightarrow ^{23}\text{Na} + p \quad , \quad 2.238$$

$$\rightarrow ^{20}\text{Ne} + \alpha \quad , \quad 4.616$$

$$\rightarrow ^{16}\text{O} \quad +2\alpha \quad , \quad -0.114$$

Average $Q = 13 \,\text{MeV}$

Oxygen Burning

$$^{16}O + ^{16}O \rightarrow ^{32}S + \gamma , \quad 16.541$$

$$\rightarrow ^{31}P + p , \quad 7.677$$

$$\rightarrow ^{31}S + n , \quad 1.453$$

$$\rightarrow ^{28}Si + \alpha , \quad 9.593$$

$$\rightarrow ^{24}Mg + 2\alpha , \quad -0.393$$

Average $Q = 16 \,\text{MeV}$

Neon Burning

Neon burning proceeds by a combination of photo-disintegrations and α captures:

$$^{20}{
m Ne} + \gamma
ightarrow ^{16}{
m O} + {}^4{
m He} \ , \quad {\it Q} = -4.73\,{
m MeV}$$

This reaction dominates over the inverse reaction known from helium burning for $T>1.5\times 10^9\,{\rm K}.$

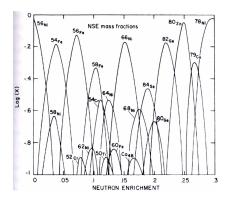
Subsequently, the ⁴He is captured on another ²⁰Ne nucleus:

20
Ne $+$ 4 He \rightarrow 24 Mg $+$ γ .

The net result is 2 $^{20}{\rm Ne} + \gamma \rightarrow {}^{16}{\rm O} + {}^{24}{\rm Mg} + \gamma \;, \quad {\it Q} = +4.583\,{\rm MeV}$

"Silicon" Burning

Actually, often we have more sulfur in the star than there is silicon, but it is custom to call this phase "silicon burning".


Typical burning temperature is $3...3.5 \times 10^9 \, \text{K}$.

Similar to neon burning, silicon burning proceeds as a series of photo-disintegration reactions, mostly, (γ, α) , and helium capture reactions, (α, γ) to build up iron group elements.

$$(\gamma, \alpha) \rightleftharpoons (\alpha, \gamma)$$

At the high T and ρ of these conditions, also weak reactions occur, converting protons into neutrons and leading to a neutron excess. This allows to actually make stable iron isotopes.

Beyond Silicon/Sulfur Burning

NSE distribution for $T=3.5\times 10^9\,\mathrm{K},$ $\rho=10^7\,\mathrm{g/cm^3}$

After silicon burning T and ρ is so high that the nuclei are in **nuclear statistical equilibrium**, i.e., the reactions are fast compared to the evolution time-scale of the star, and the abundance distribution of the nuclei is given by a Saha equation.

Summary of Energetics

Nuclear Fuel	Process	T _{threshold} 10 ⁶ K	Products	Energy per Nucleon (MeV)
Н	p-p	~4	He	6.55
Н	CNO	15	He	6.25
He	3α	100	C, O	0.61
C	C + C	600	O, Ne, Na, Mg	0.54
O	O + O	1000	Mg, S, P, Si	~0.3
Si	Nuc. eq.	3000	Co, Fe, Ni	< 0.18