Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 22: Simple Stellar Models

2 Simple Stellar Models

- Simple Model Assumptions
- Lane-Emden Equation
- White Dwarf Masses and Radii

Computer Class

Room 575, Walter Library

Friday, 09:00-11:00

meet at fron tesk on 5th floor at 09:00.

▲ 同 ▶ → ● 三

Overview

2 Simple Stellar Models

- Simple Model Assumptions
- Lane-Emden Equation
- White Dwarf Masses and Radii

Simple Model Assumptions Lane-Emden Equation White Dwarf Masses and Radii

Stellar Structure Equations

stationary terms time-dependent terms $\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$ (1) $\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}$ (2) $\frac{\partial F}{\partial m} = \varepsilon_{\rm nuc} - \varepsilon_{\nu} - c_{P} \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}$ (3) $\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right]$ (4) $\frac{\partial X_i}{\partial t} = f_i(\rho, T, \mathbf{X})$ (5)

where $\mathbf{X} = \{X_1, X_2, \dots, X_i, \dots\}$.

• □ ▶ • □ ▶ • □ ▶ •

< A >

Equation of State

Equation of state

$$P=rac{\mathcal{R}}{\mu_{\mathsf{I}}}
ho \mathsf{T}+P_{\mathsf{e}}+rac{1}{3}\mathsf{a}\mathsf{T}^{\mathsf{4}}$$

where $P_{\rm e}$ is the electron pressure that can be due to

- ideal electron gas,
- non-relativistic degenerate electron gas, or
- relativistic degenerate electron gas

Temperature Gradient

• The temperature gradient ∇ can be the radiative temperature gradient

$$\nabla_{\mathsf{rad}} = \left(\frac{\mathsf{d}\,\,\mathsf{ln}\,T}{\mathsf{d}\,\,\mathsf{ln}\,P}\right)_{\mathsf{rad}} = \frac{3}{16\pi\mathsf{acG}}\frac{\kappa\mathsf{FP}}{\mathsf{m}\mathsf{T}^4}$$

or close to the adiabatic temperature gradient in convective regions

$$\nabla_{\mathsf{ad}} = \left(\frac{\partial \ln T}{\partial \ln P}\right)_{\mathsf{ad}}$$

• usually, in hydrostatic stars in thermal equilibrium ∇ is between ∇_{ad} and ∇_{rad} :

$$\nabla_{\mathsf{ad}} \leq \nabla \leq \nabla_{\mathsf{rad}} \quad \text{or} \quad \nabla_{\mathsf{ad}} \geq \nabla \geq \nabla_{\mathsf{rad}}$$

A B > A B >

Simple Model Assumptions Lane-Emden Equation White Dwarf Masses and Radii

Boundary Conditions

- In the center
 - *r* = 0
 - *m* = 0
 - *F* = 0
- at the surface
 - r = R
 m = M
 F = L

• at the surface we can also use the effective temperature

$$L = 4\pi R^2 \sigma T_{\rm eff}^4$$

Image: A = A

Simple Model Assumptions Lane-Emden Equation White Dwarf Masses and Radii

< A ▶

Simple Model Assumptions

Assume that

- Temperature, density, and pressure decrease outward
- chemical homogeneity
- luminosity increases outward
- spherially symmetric
- neglect rotation, magnetic fields, binary star companions

Polytropic Equation of State

- the first two equations couple to the second set only indirectly through the dependence of pressure on temperature
- let us assume pressure only depends on temperature using a simple power law

$$P = K \rho^{\gamma}$$

- Note that this γ is not the adiabatic exponent, which is a property of the gas, but γ is called the *polytropic exponent* and is a property of the stellar model that takes into account temperature gradients!
- we call this a *polytropic equation of state* with a polytropic index *n* defined by

$$\gamma = 1 + \frac{1}{n}$$

• □ ▶ • □ ▶ • □ ▶ •

Miscellaniuos Simple Stellar Models Simple Stellar Models

Simple Solutions

• let us multiply the equation for pressure gradient with respect to radius,

$$\frac{\partial P}{\partial r} = -\rho \frac{Gm}{r^2}$$

by $r^2/
ho$ and differentiate with respect to r, i.e.,

$$\frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{r^2}{\rho} \frac{\mathrm{d}P}{\mathrm{d}r} \right) = -G \frac{\mathrm{d}m}{\mathrm{d}r}$$

substituting

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$

in this, we obtain

$$\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{r^2}{\rho}\frac{\mathrm{d}P}{\mathrm{d}r}\right) = -4\pi G\rho$$

Simple Solutions for Polytrope

• let us now use the polytropic equation of state,

$$P = K\rho^{\gamma} = K\rho^{1+1/n}$$

to obtain an ordinary differential equation for density alone:

$$\frac{(n+1)K}{4\pi Gn}\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\rho^{(1-n)/n}\frac{\mathrm{d}\rho}{\mathrm{d}r}\right) = -\rho$$

- the solution for $\rho(r)$ is called a *polytrope* of index *n*.
- it requires two boundary conditions:
 - $\rho = 0$ at the surface, r = R, since P(R) = 0
 - $\frac{dP}{dr} = 0$ in the center, r = 0, since $\frac{d\rho}{dr} = 0$
- the polytrope is then uniquely defined by K, n, and R
- from this we can compute other quantities, like P or m

Simple Solutions for Polytrope

 ${\, \bullet \,}$ we can introduce a dimensionless variable θ with

$$0 \le heta \le 1$$

by normalization to the central density:

$$\rho = \rho_{\rm c} \theta^n$$

we then obtain

$$\begin{bmatrix} \frac{(n+1)K}{4\pi Gn} \end{bmatrix} \frac{1}{r^2} \frac{d}{dr} \left(\rho_c^{\frac{1-n}{n}} \theta^{1-n} r^2 \frac{d(\rho_c \theta^n)}{dr} \right) = -\rho_c \theta^n$$
$$\begin{bmatrix} \frac{(n+1)K}{4\pi Gn\rho_c^{\frac{n-1}{n}}} \end{bmatrix} \frac{1}{r^2} \frac{d}{dr} \left(\theta^{1-n} r^2 n \theta^{n-1} \frac{d\theta}{dr} \right) = -\theta^n$$
$$\begin{bmatrix} \frac{(n+1)K}{4\pi G\rho_c^{\frac{n-1}{n}}} \end{bmatrix} \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\theta}{dr} \right) = -\theta^n$$

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Lecture 22: Simple Stellar Models

Simple Model Assumptions Lane-Emden Equation White Dwarf Masses and Radii

Lane-Emden Equation

Defining

$$\alpha = \sqrt{\frac{(n+1)K}{4\pi G \rho_{\mathsf{c}}^{\frac{n-1}{n}}}}$$

and substituting $\textbf{\textit{r}}=\alpha \xi$ we have

$$\alpha^{2} \frac{1}{(\alpha\xi)^{2}} \frac{\mathsf{d}}{\mathsf{d}(\alpha\xi)} \left((\alpha\xi)^{2} \frac{\mathsf{d}\theta}{\mathsf{d}(\alpha\xi)} \right) = -\theta^{n}$$

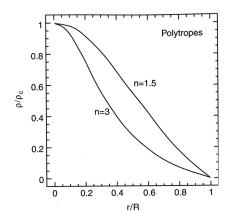
an obtain the Lane-Emden Equation -n is only parameter -

$$\frac{1}{\xi^2} \frac{\mathsf{d}}{\mathsf{d}\xi} \left(\xi^2 \frac{\mathsf{d}\theta}{\mathsf{d}\xi} \right) = -\theta^n$$

with boundary conditions $\theta = 1$ and $\frac{d\theta}{d\xi} = 0$ at $\xi = 0$

Simple Model Assumptions Lane-Emden Equation White Dwarf Masses and Radii

Polytropes



- The Lane-Emden Equation can be integrated starting at ξ = 0.
- for n < 5 we find monotonically decreasing solutions
- define *radius* of star as the point where the solution of the Lane-Emden Equation drops to zero, ξ₁, we get

 $R = \alpha \xi_1$

Total Mass of Star

• We can integrate the polytrope starting with

$$M = \int_0^R 4\pi r^2 \rho \,\mathrm{d}r = 4\pi \alpha^3 \rho_{\rm c} \int_0^{\xi_1} \xi^2 \theta^n \,\mathrm{d}\xi$$

after substitution of $r = \alpha \xi$ and $\rho = \rho_c \theta^n$.

• Using the Lane-Emden Equation we then substitute

$$\xi^2 \theta^n = -\frac{\mathsf{d}}{\mathsf{d}\xi} \bigg(\xi^2 \frac{\mathsf{d}\theta}{\mathsf{d}\xi} \bigg)$$

and obtain

$$M = -4\pi\alpha^{3}\rho_{c}\int_{0}^{\xi_{1}}\frac{\mathrm{d}}{\mathrm{d}\xi}\left(\xi^{2}\frac{\mathrm{d}\theta}{\mathrm{d}\xi}\right)\mathrm{d}\xi = -4\pi\alpha^{3}\rho_{c}\xi_{1}^{2}\left(\frac{\mathrm{d}\theta}{\mathrm{d}\xi}\right)_{\xi_{1}}$$

Definition of Polytropic Constants - Mass and Radius

• We can now define

$$M_n = -\xi_1^2 \left(\frac{\mathrm{d}\theta}{\mathrm{d}\xi}\right)_{\xi_1} > 0$$

where both ξ_1 and $\left(\frac{d\theta}{d\xi}\right)_{\xi_1}$ are constants determined from the solution of the Lane-Emden Equation

$$M = 4\pi \alpha^3 \rho_{\rm c} M_n$$

• similarly we define for a polytrope of index n

$$R_n = \xi_1$$
 and obtain $R = \alpha R_n$

Polytropic Mass-Radius Relation

• In the relation $M = 4\pi \alpha^3 \rho_c M_n$ let us now eliminate ρ_c from the definition of $\alpha^2 = (n+1) \mathcal{K} / 4\pi G \rho_c^{\frac{n-1}{n}}$

$$M = 4\pi\alpha^3 \left(\frac{(n+1)K}{4\pi G \alpha^2}\right)^{\frac{n}{n-1}} M_n$$

and then eliminate α using $\textit{R} = \alpha\textit{R}_{\textit{n}}, \ \alpha = \textit{R}/\textit{R}_{\textit{n}}$:

$$\left(\frac{GM}{M_n}\right)^{n-1} = \frac{(4\pi)^{n-1+n} \alpha^{3n-3-2n}}{G^{n-(n-1)}} [(n+1)K]^n = \frac{\alpha^{n-3}}{4\pi G} [(n+1)K]^n$$
$$\left(\frac{GM}{M_n}\right)^{n-1} = \left(\frac{R}{R_n}\right)^{n-3} \frac{[(n+1)K]^n}{4\pi G}$$

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 22: Simple Stellar Models

Properties of Polytropic Mass-Radius Relation

• We now have the *Polytropic Mass-Radius Relation*:

$$\left(\frac{GM}{M_n}\right)^{n-1} \left(\frac{R}{R_n}\right)^{3-n} = \frac{\left[(n+1)K\right]^n}{4\pi G}$$

 for n = 3 mass becomes independent of radius and is only determined by K:

$$M = 4\pi M_3 \left(\frac{K}{\pi G}\right)^{3/2}$$

 \Rightarrow there is only one possible mass that will satisfy hydrostatic equilibrium

Image: A image: A

Properties of Polytropic Mass-Radius Relation

$$\left(\frac{GM}{M_n}\right)^{n-1} \left(\frac{R}{R_n}\right)^{3-n} = \frac{\left[(n+1)K\right]^n}{4\pi G}$$

 for n = 1 radius becomes independent of mass and is only determined by K:

$$R = 4\pi R_1 \left(\frac{K}{2\pi G}\right)^{1/2}$$

- for 1 < n < 3 we have $R^{3-n} \propto M^{1-n}$: more massive stars are denser (3 - n > 0, 1 - n < 0)
- note, however, that *n* may be a function of stellar mass (more massive stars are usually less dense)

Definition of Polytropic Constants - Density

• the central density of the star is then

$$\rho_{\rm c} = -\frac{M}{4\pi\alpha^3\xi^2 \left(\frac{\mathrm{d}\theta}{\mathrm{d}\xi}\right)_{\xi_1}} = -\frac{3M}{4\pi R^3} \frac{1}{\left(\frac{3}{\xi_1} \left(\frac{\mathrm{d}\theta}{\mathrm{d}\xi}\right)_{\xi_1}\right)} = \bar{\rho} D_n$$

with

$$\bar{\rho} = \frac{3M}{4\pi R^3}$$
 and $D_n = \left(\frac{3}{\xi_1} \left(\frac{\mathrm{d}\theta}{\mathrm{d}\xi}\right)_{\xi_1}\right)^{-1}$

 Note that the central density, ρ_c, is linearly related to the average density, ρ
, and D_n is a constant only depending on n.

イロト イポト イヨト イヨト

Lane-Emden Equation White Dwarf Masses and Radii

Definition of Polytropic Constants - Pressure

From

$$P = K \rho^{\frac{n+1}{n}}$$

and replacing K from the mass-radius relation we obtain a relation for the central pressure:

$$P_{\rm c} = \frac{(4\pi G)^{1/n}}{n+1} \left(\frac{GM}{M_n}\right)^{\frac{n-1}{n}} \left(\frac{R}{R_n}\right)^{\frac{3-n}{n}} \rho_{\rm c}^{\frac{n+1}{n}} = \sqrt[3]{4\pi} B_n G M^{2/3} \rho_{\rm c}^{4/3}$$

where we define a B_n that collects all the dependences on polytropic index n and only varies very slowly with n.

• hence the above relation is almost universally applicable to polytropic stars.

Simple Model Assumptions Lane-Emden Equation White Dwarf Masses and Radii

Polytropic Constants

Table 5.	Polytropic	constants
----------	------------	-----------

n	D_n	M_n	R_n	B_n
1.0	3.290	3.14	3.14	0.233
1.5	5.991	2.71	3.65	0.206
2.0	11.40	2.41	4.35	0.185
2.5	23.41	2.19	5.36	0.170
3.0	54.18	2.02	6.90	0.157
3.5	152.9	1.89	9.54	0.145

Polytropic constants for selected polytropes.

(日) (同) (三) (三)

э

White Dwarf Mass-Radius Relation

- White dwarf stars: mass $\sim M_{\odot}$, radius \sim earth radius, cold \Rightarrow Well described by (non-relativistic) degenerate equation of state with $\mu_{\rm e} = 2$, $P_{\rm e,deg} = K_1 \rho^{5/3} \Rightarrow K = K_1$ and n = 1.5.
- from the mass-radius relation,

$$\left(\frac{GM}{M_n}\right)^{n-1} \left(\frac{R}{R_n}\right)^{3-n} = \frac{\left[(n+1)K\right]^n}{4\pi G}$$

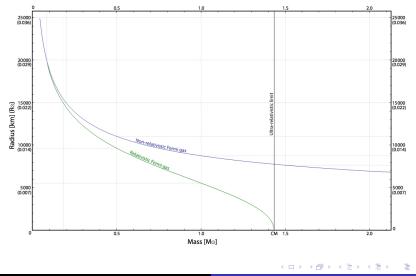
we then find

$$R \propto M^{-1/3}$$
, $ar{
ho} \propto M R^{-3} \propto M^2$

- NOTE: for increasing mass, the radius decreases and the density increases.
- eventually the density becomes so high that we can no longer use non-relativistic degenerate equation of state.

Simple Model Assumptions Lane-Emden Equation White Dwarf Masses and Radii

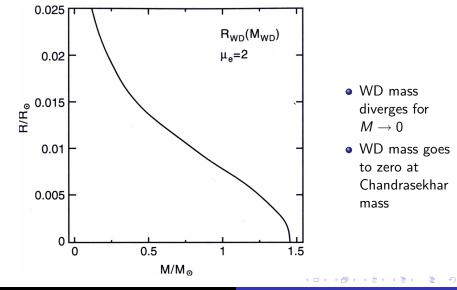
White Dwarf Mass-Radius Relation



Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 22: Simple Stellar Models

Simple Model Assumptions Lane-Emden Equation White Dwarf Masses and Radii

White Dwarf Mass-Radius Relation



A A B

White Dwarf Maximum Mass

• When we use the relativistic degenerate equation of state ($\mu_{\rm e}=2)$,

$$P_{\rm e,rel-deg} = \frac{hc}{8} \left(\frac{3}{\pi}\right)^{1/3} \frac{1}{{\rm u}^{4/3}} \left(\frac{\rho}{\mu_{\rm e}}\right)^{4/3} = K_2 \rho^{4/3}$$

we have a polytrope with $K = K_2$ and n = 3.

• we recall that for n = 3 there is only one unique mass as solution

$$M = 4\pi M_3 \left(\frac{K}{\pi G}\right)^{3/2}$$

• This determines the maximum mass of white dwarfs