
Recap
Simple Stellar Models

Astrophysics I: Stars and Stellar Evolution
AST 4001

Alexander Heger1,2,3

1School of Physics and Astronomy
University of Minnesota

2Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2
Los Alamos National Laboratory

3Department of Astronomy and Astrophysics
University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 23: Chandrasekhar Mass



Recap
Simple Stellar Models

Simple Stellar Model Assumptions
Lane-Emden Equation
Maximum Mass of White Dwarfs

Overview

1 Recap
Simple Stellar Model Assumptions
Lane-Emden Equation
Maximum Mass of White Dwarfs

2 Simple Stellar Models
Chandrasekhar Mass

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 23: Chandrasekhar Mass



Recap
Simple Stellar Models

Simple Stellar Model Assumptions
Lane-Emden Equation
Maximum Mass of White Dwarfs

Stellar Structure Equations

stationary terms time-dependent terms
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where X = {X1, X2, . . . ,Xi , . . .} .
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Equation of State

Equation of state

P =
R
µI

ρT + Pe +
1

3
aT 4

where Pe is the electron pressure that can be due to

ideal electron gas,

non-relativistic degenerate electron gas, or

relativistic degenerate electron gas
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Temperature Gradient

The temperature gradient ∇ can be the radiative temperature
gradient

∇rad =

(
d ln T

d ln P

)
rad

=
3

16πacG

κFP

mT 4

or close to the adiabatic temperature gradient in convective
regions

∇ad =

(
∂ ln T

∂ ln P

)
ad

usually, in hydrostatic stars in thermal equilibrium
∇ is between ∇ad and ∇rad:

∇ad ≤ ∇ ≤ ∇rad or ∇ad ≥ ∇ ≥ ∇rad
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Boundary Conditions

In the center

r = 0
m = 0
F = 0

at the surface

r = R
m = M
F = L

at the surface we can also use the effective temperature

L = 4πR2σT 4
eff
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Simple Model Assumptions

Assume that

Temperature, density, and pressure decrease outward

chemical homogeneity

luminosity increases outward

spherically symmetric

neglect rotation, magnetic fields, binary star companions
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Polytropic Equation of State

the first two equations couple to the second set only indirectly
through the dependence of pressure on temperature

let us assume pressure only depends on temperature using a
simple power law

P = Kργ

Note that this γ is not the adiabatic exponent, which is a
property of the gas, but γ is called the polytropic exponent
and is a property of the stellar model that takes into account
temperature gradients!

we call this a polytropic equation of state with a polytropic
index n defined by

γ = 1 +
1

n
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Simple Solutions

let us multiply the equation for pressure gradient with respect
to radius,

∂P

∂r
= −ρ

Gm

r2

by r2/ρ and differentiate with respect to r , i.e.,

d

dr

(
r2

ρ

dP

dr

)
= −G

dm

dr

substituting
∂r

∂m
=

1

4πr2ρ

in this, we obtain

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ
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Simple Solutions for Polytrope

let us now use the polytropic equation of state,

P = Kργ = Kρ1+1/n

to obtain an ordinary differential equation for density alone:

(n + 1)K

4πGn

1

r2

d

dr

(
r2ρ(1−n)/n dρ

dr

)
= −ρ

the solution for ρ(r) is called a polytrope of index n.

it requires two boundary conditions:

ρ = 0 at the surface, r = R, since P(R) = 0
dP
dr = 0 in the center, r = 0, since dρ

dr = 0

the polytrope is then uniquely defined by K , n, and R

from this we can compute other quantities, like P or m
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Simple Solutions for Polytrope

we can introduce a dimensionless variable θ with

0 ≤ θ ≤ 1

by normalization to the central density:

ρ = ρcθ
n

we then obtain[
(n + 1)K

4πGn

]
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Lane-Emden Equation

Defining

α =

√
(n + 1)K

4πG ρ
n−1

n
c

and substituting r = αξ we have

α2 1

(αξ)2
d

d(αξ)

(
(αξ)2

dθ

d(αξ)

)
= −θn

an obtain the Lane-Emden Equation – n is only parameter –

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θn

with boundary conditions θ = 1 and dθ
dξ = 0 at ξ = 0
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Polytropes

The Lane-Emden Equation
can be integrated starting at
ξ = 0.

for n < 5 we find
monotonically decreasing
solutions

define radius of star as the
point where the solution of
the Lane-Emden Equation
drops to zero, ξ1, we get

R = αξ1

⇒ structure of polytrope
only depends on n!
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Total Mass of Star

We can integrate the polytrope starting with

M =

∫ R

0
4πr2ρ dr = 4πα3ρc

∫ ξ1

0
ξ2θn dξ

after substitution of r = αξ and ρ = ρcθ
n.

Using the Lane-Emden Equation we then substitute

ξ2θn = − d

dξ

(
ξ2 dθ

dξ

)
and obtain

M = −4πα3ρc

∫ ξ1

0

d

dξ

(
ξ2 dθ

dξ

)
dξ = −4πα3ρcξ

2
1

(
dθ

dξ

)
ξ1
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Definition of Polytropic Constants - Mass and Radius

We can now define

Mn = −ξ2
1

(
dθ

dξ

)
ξ1

> 0

where both ξ1 and
(

dθ
dξ

)
ξ1

are constants determined from the

solution of the Lane-Emden Equation

M = 4πα3ρcMn

similarly we define for a polytrope of index n

Rn = ξ1 and obtain R = αRn
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Polytropic Mass-Radius Relation

In the relation M = 4πα3ρcMn let us now eliminate ρc from

the definition of α2 = (n + 1)K

/
4πG ρ

n−1
n

c

M = 4πα3

(
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4πG α2

) n
n−1

Mn

and then eliminate α using R = αRn, α = R/Rn:(
GM
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=
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Properties of Polytropic Mass-Radius Relation

We now have the Polytropic Mass-Radius Relation:(
GM

Mn

)n−1( R

Rn

)3−n

=
[(n + 1)K ]n

4πG

for n = 3 mass becomes independent of radius and is only
determined by K :

M = 4πM3

(
K

πG

)3/2

⇒ there is only one possible mass that will satisfy hydrostatic
equilibrium

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 23: Chandrasekhar Mass



Recap
Simple Stellar Models

Simple Stellar Model Assumptions
Lane-Emden Equation
Maximum Mass of White Dwarfs

Properties of Polytropic Mass-Radius Relation

(
GM

Mn

)n−1( R

Rn

)3−n

=
[(n + 1)K ]n

4πG

for n = 1 radius becomes independent of mass and is only
determined by K :

R = 4πR1

(
K

2πG

)1/2

for 1 < n < 3 we have R3−n ∝ M1−n:
more massive stars are denser (3− n > 0 , 1− n < 0)

note, however, that n may be a function of stellar mass
(more massive stars are usually less dense)
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Definition of Polytropic Constants - Density

the central density of the star is then

ρc = − M

4πα3ξ2
(

dθ
dξ

)
ξ1

= − 3M

4πR3

1(
3
ξ1

(
dθ
dξ

)
ξ1

) = ρ̄Dn

with

ρ̄ =
3M

4πR3
and Dn =

(
3

ξ 1

(
dθ

dξ

)
ξ1

)−1

Note that the central density, ρc, is linearly related to the
average density, ρ̄, and Dn is a constant only depending on n.
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Definition of Polytropic Constants - Pressure

From
P = Kρ

n+1
n

and replacing K from the mass-radius relation we obtain a
relation for the central pressure:

Pc =
(4πG )1/n

n + 1

(
GM

Mn

)n−1
n
(

R

Rn

)3−n
n

ρ
n+1
n

c =
3
√

4πBnGM2/3ρ
4/3
c

where we define a Bn that collects all the dependences on
polytropic index n and only varies very slowly with n.

hence the above relation is almost universally applicable to
polytropic stars.
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Polytropic Constants

Polytropic constants for selected
polytropes.
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White Dwarf Mass-Radius Relation

White dwarf stars: mass ∼ M¯, radius ∼ earth radius, cold
⇒ Well described by (non-relativistic) degenerate equation of
state with µe = 2, Pe,deg = K1ρ

5/3 ⇒ K = K1 and n = 1.5.

from the mass-radius relation,(
GM

Mn

)n−1( R

Rn

)3−n

=
[(n + 1)K ]n

4πG

we then find

R ∝ M−1/3 , ρ̄ ∝ MR−3 ∝ M2

Note: for increasing mass, the radius decreases and the
density increases.

eventually the density becomes so high that we can no longer
use non-relativistic degenerate equation of state.
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White Dwarf Mass-Radius Relation
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White Dwarf Mass-Radius Relation

WD mass
diverges for
M → 0

WD mass goes
to zero at
Chandrasekhar
mass
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White Dwarf Maximum Mass

When we use the relativistic degenerate equation of state
(µe = 2),

Pe,rel−deg =
hc

8

(
3

π

)1/3 1

u4/3

(
ρ

µe

)4/3

= K2ρ
4/3

we have a polytrope with K = K2 and n = 3.

we recall that for n = 3 there is only one unique mass as
solution

M = 4πM3

(
K

πG

)3/2

This determines the maximum mass of white dwarfs
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The Chandrasekhar Mass

This limiting mass is called the Chandrasekhar Mass

MCh =
M3

4π

(
3

2

)1/2( hc

Gu4/3

)3/2

µe
−2 = (5.836 M¯)µe

−2

MCh = 1.459 M¯

(µe

2

)−2

(Nobel Prize in Physics 1983)
for an iron core with µe = 2.15 we obtain MCh = 1.26 M¯
for “hot” cores of massive stars partially degenerate
relativistic equation of state has to be used
⇒ Mcrit > MCh

Mcrit ≈ MCh

"
1 +

π2k2T 2

εF
2

#
where εF is the Fermi energy for the relativistic and partially degenerate electrons, Ye = 1/µe,

εF = 1.11

„
ρ

107 g cm−3
Ye

«1/3
MeV
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The Chandrasekhar Mass - Implications and Applications

What happens when the Chandrasekhar Mass is reached?

for massive stars (take into account corrections for µe and T ):
core collapses to form neutron star or black hole

usually a supernova results, but, especially in case a black hole
is formed (big core), much of the inner part of the star may
be swallowed;

in this case, at rare occasions, powerful gamma-ray bursts
may result.

for white dwarfs, it depends on the composition:

for white dwarfs made of Ne, Mg, and O:
resulting from heavier progenitor stars,
it will collapse to a neutron star (“electron capture supernova”)
for white dwarfs made of carbon and oxygen:
it will ignite burning of carbon in the center and explode as a
thermonuclear Type Ia supernova
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Type Ia Supernova Progenitor
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Type Ia Supernova Explosion

simulation of a
Type Ia supernova
explosion

(by Fritz Röpke)
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Accretion Induced Collapse

Accretion Induced Collapse

r (100 km) r (100 km)

• NeMgO WD 
accretes from 
companion star

• When 
Chandrasekhar 
mass is 
approached, 
electron captures 
reduce electron 
degeneracy 
pressure support

◄Rapid collapse and 
bounce (faint SN)

(Dessart et al. 2006)
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