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Eddington Limit - Approximations

as simple approximation we often use just the electron
scattering opacity, (with κes,0 = 0.4 cm2 g−1)

κ = κes =
κes,0

µe
≈ 1

2
κes,0(1 + X )

κes,0 is due to Thompson scattering on free electrons, with a

cross section of σT =
(

8π
3

)(
e2

mec2

)2
= 6.652×10−25 cm2;

κes,0 = σT/u

for a fully ionized gas of pure hydrogen we hence have

Ledd ≈
4πcGM

κes,0
=

4πcGMu

σT

Ledd ≈ 1.3×1038

(
M

M¯

)
erg s−1 = 3.3×104

(
M

M¯

)
L¯
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Eddington Quiz

Derive Eddington Luminosity for pure helium stars.

A pure helium star has twice the Eddington luminosity of a star
composed of pure hydrogen.
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Eddington Accretion Quiz

Assume a star of radius R and mass M accretes material as
“Eddington rate”, i.e., the “accretion luminosity” equals the
Eddington luminosity.
For simplicity, assume that this accretion luminosity is just
given by accretion rate and surface potential.
Assume that all the energy that is released as the material hits
the surface is radiated away.
Assume that the gas is optically thin before it hits the surface,
i.e., the gas does not “trap” the radiation.
Assume pure hydrogen gas.

Compute this Eddington accretion rate.

GMṀ

R
=

4πcGMu

σT
⇒ Ṁacc,Edd =

4πcu

σT
R
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Stellar Structure Equations

stationary terms time-dependent terms

∂r

∂m
=

1

4πr2ρ
(1)

∂P

∂m
= − Gm

4πr4
− 1

4πr2

∂2r

∂t2
(2)

∂F

∂m
= εnuc − εν − cP

∂T

∂t
+

δ

ρ

∂P

∂t
(3)

∂T

∂m
= − GmT

4πr4P
∇

[
1 +

r2

Gm

∂2r

∂t2

]
(4)

∂Xi

∂t
= fi (ρ, T ,X) (5)

where X = {X1, X2, . . . ,Xi , . . .} .
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Eddington Model

Using Prad = 1
3aT 4 we can write

dPrad

dP
=

(
dr

dP

)
d
(

1
3aT 4

)
dr

=

(
dr

dP

)
4

3
aT 3 dT

dr

dPrad

dP
=

(
− r2

Gmρ

)(
4

3
aT 3

)(
− 3

4ac

κρ

T 3

F

4πr2

)
=

Fκ

4πcGm

We can define a function η to describe the ratio of energy
flow to enclosed mass, F/m as in terms of the total specific
energy generation rate of the star

F

m
= η

L

M
and obtain

dPrad

dP
=

L

4πcGM
κη
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Eddington Model

usually star burns most fuel in center (high F/m)

usually opacity increases outward (high κ)

⇒ Eddington makes simple assumption:

κη = constant = κsurf

where κsurf is the surface opacity (η = 1)

we now have

dPrad

dP
=

Lκsurf

4πcGM
= constant

and obtain

Prad =
Lκsurf

4πcGM
P

⇒ constant ratio of gas pressure to total pressure
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Eddington Model

We recall

β =
Pgas

P

hence
Prad = P − Pgas = (1− β)P

and we can write

L =
4πcGM

κsurf
(1− β) = L∗edd(1− β)

where L∗edd is a variation of Eddington luminosity considering
total surface opacity, in this simplified model.

This implies that the luminosity reaches Eddington luminosity
for a star dominated by radiation pressure (β → 0)
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Eddington Model

We may write the pressure in the form

P =
Prad

1− β
=

a

3
T 4 1

1− β

or in the form

P =
Pgas

β
=
RTρ

µ

1

β

combining these two and solving for T we obtain:

T =

[
3R(1− β)

aµβ

]1/3

ρ1/3

using again P = RTρ/µβ we can now write the equation of
state (EOS) in the form

P = Kρ4/3 , K =

[
3R4(1− β)

aµ4β4

]1/3

⇒ polytrope of index n = 3
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Eddington Quadratic Equation

Recall that for n = 3 we have a unique relation between K
and mass

M = 4πM3

(
K

πG

)3/2

Note: for completely degenerate stars, we used that to
derive the Chandrasekhar mass, as K was derived from
elementary physics, the degenerate EOS.

but now this gives a relation between that allows to compute
β for a given M and µ (function of given gas composition):

1− β = 0.003

(
M

M¯

)2

µ4β4

It is called the Eddington Quadratic Equation

This usually gives a good approximation for non-degenerate
main-sequence stars.
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Eddington Quadratic Equation

normalized solution
for the Eddington
quadratic equation
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Properties Eddington Model

for given composition (fixed µ), β decreases as M increases

inserting the solution function β(M, µ) into L = L∗edd(1− β)
we obtain

L = 0.003
4πcGM¯

κsurf
µ4β(M, µ)4

(
M

M¯

)3

recover mass-luminosity relation

as star evolves, µ increases, hence it gets closer to Eddington
limit and its luminosity rises;
but unless the star is well mixed (e.g., fully convective), there
will no longer be a uniform µ throughout the star
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M-L Quiz

For M →∞, recover the relation L ∝ M from

L = 0.003
4πcGM¯

κsurf
µ4β(M, µ)4

(
M

M¯

)3

and

1− β = 0.003

(
M

M¯

)2

µ4β4

From small groups of 2-3 and write down your derivation.
3 minutes.

Be prepared to present your group’s solution on the black board.
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M-L Quiz Solution

For M →∞, recover the relation L ∝ M from

L = 0.003
4πcGM¯

κsurf
µ4β(M, µ)4

(
M

M¯

)3

and

1− β = 0.003

(
M

M¯

)2

µ4β4

In the second equation, the right hand side is finate (0 < β < 1)
hence as M →∞ on the right hand side β → 0 is required. This
menas that on the left hand side we can neglect β, and we have
β4 ∝ M−2. If we put this into the first equation, we are left with
only one power in M, hence L ∝ M.
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Computer Lab

Class tomorrow, 10:10-11:00, Walter Library, room 575
Meet at reception on 5th floor on time
(class room is in secured area)

Be prepared.

have a look at WIKI on web bage
use this to report your experince, post questions.

Unix introduction
http://static.msi.umn.edu/tutorial/hardwareprogramming/intro to unix 06 07 06.pdf

emacs introduction
http://www.gnu.org/software/emacs/manual/emacs.html

FORTRAN introduction
http://www.cs.mtu.edu/ shene/COURSES/cs201/NOTES/intro.html
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