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Eddington Model

usually star burns most fuel in center (high F/m)

usually opacity increases outward (high κ)

⇒ Eddington makes simple assumption:

dPrad

dP
=

L

4πcGM
κη , κη = constant = κsurf

where κsurf is the surface opacity (η = 0)

we now have

dPrad

dP
=

L

4πcGMκsurf
= constant

and obtain

Prad =
L

4πcGMκsurf
P

⇒ constant ratio of gas pressure to total pressure
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Eddington Model

From

T =

[
3R(1− β)

aµβ

]1/3

ρ1/3

and P = RTρ/µβ we have

P = Kρ4/3 , K =

[
3R4(1− β)

aµ4β4

]1/3

⇒ polytrope of index n = 3 ⇒

M = 4πM3

(
K

πG

)3/2

⇒ Eddington Quadratic Equation

1− β = 0.003

(
M

M¯

)2

µ4β4
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Eddington Quadratic Equation

normalized solution
for the Eddington
quadratic equation
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Properties Eddington Model

for given composition (fixed µ), β decreases as M increases

inserting the solution function β(M, µ) into L = L∗edd(1− β)
we obtain

L = 0.003
4πcGM¯

κsurf
µ4β(M, µ)4

(
M

M¯

)3

recover mass-luminosity relation

as star evolves, µ increases, hence it gets closer to Eddington
limit and its luminosity rises;
but unless the star is well mixed (e.g., fully convective), there
will no longer be a uniform µ throughout the star
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M-L Quiz Solution

For M →∞, recover the relation L ∝ M from

L = 0.003
4πcGM¯

κsurf
µ4β(M, µ)4

(
M

M¯

)3

and

1− β = 0.003

(
M

M¯

)2

µ4β4

In the second equation, the right hand side is finate (0 < β < 1)
hence as M →∞ on the right hand side β → 0 is required. This
menas that on the left hand side we can neglect β, and we have
β4 ∝ M−2. If we put this into the first equation, we are left with
only one power in M, hence L ∝ M.
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Overview

local instabilities:
convection (Rayleigh Taylor instability)
semiconvection (layered convection)
thermohaline convection (salt finger instability)
rotation: e.g.:

shear instabilities (Kelvin-Helmholtz instability)
circulations (Eddington-Sweet)
etc.

magnetic instabilities: e.g.,
Parker instability,
dynamos,
etc.

global instabilities
thermal instabilities

global
thin shell instability

dynamical instabilities
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Virial Theorem: Ideal Gas without radiation

Recall Virial Theorem:

3

∫ M

0

P

ρ
dm = −Ω

Ideal gas without radiation:

U = −1

2
Ω

for the total energy of the star we hence have:

E = U + Ω =
1

2
Ω = −U

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 26: Global Stability of Stars



Recap
Stellar Stability

Secular Thermal Stability (The Stellar Thermometer)
Degenerate Thermonuclear Runaway
Thin Shell Instability

Quiz

What is the specific internal energy of gas and of radiation?

ugas =
RT

µ
, urad =

aT 4

ρ

Note:

Pgas =
RTρ

µ
, Prad =

1

3
aT 4
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Virial Theorem: Ideal Gas with radiation

Virial Theorem:

3

∫ M

0

P

ρ
dm = −Ω

Ideal gas with radiation:

P

ρ
=

Pgas

ρ
+

Prad

ρ
=
R
µ

T +
a

3ρ
T 4 =

2

3
ugas +

1

3
urad

−Ω = 3

∫ M

0

P

ρ
dm = 3

∫ M

0

(
2

3
ugas +

1

3
urad

)
dm = 2Ugas+Urad

Ugas = −1

2
(Ω + Urad)

⇒ radiation reduces “effective” gravity
the total energy hence is

E = Ω + Urad + Ugas =
1

2
(Ω + Urad) = −Ugas
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Stellar Thermometer

Rate of change of energy: Ė = Lnuc − L

In thermal equilibrium: Lnuc = L

Recall:
(

∂ ln εnuc
∂ ln T

)
ρ
≥ 0,

(
∂ ln εnuc
∂ ln ρ

)
T
≥ 0

What happens if there is an imbalance? (recall E < 0)

Case Lnuc > L (Ė > 0):
star expands, average T ↓, ρ ↓
⇒ nuclear reaction rate decreases, Lnuc ↓
Case Lnuc < L (Ė < 0):
star contracts, average T ↑, ρ ↑
⇒ nuclear reaction rate increases, Lnuc ↑

⇒ self-regulation

⇒ secular stability

⇒ allows star to stay in thermal equilibrium for a long time.

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 26: Global Stability of Stars



Recap
Stellar Stability

Secular Thermal Stability (The Stellar Thermometer)
Degenerate Thermonuclear Runaway
Thin Shell Instability

Quiz

Can you think of a rection or nuclear process in a star where(
∂ ln εnuc

∂ ln T

)
ρ

= 0

(
∂ ln εnuc

∂ ln ρ

)
T

= 0

Nuclear decays are (usually independent of T and ρ.
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Thermal instability in degenerate gas

In degenerate star (degenerate gas EOS)

P = Kρ5/3

(for non-rel. deg. gas) pressure does not depend on T .

⇒ no significant expansion, no drop in T or ρ
(except due to the deviations from complete degeneracy)

T ↑⇒ εnuc ↑⇒ T ↑⇒ . . . thermonuclear runaway
two possible outcomes are:

enough fuel is burned to unbind star (layers)
⇒ supernova
degeneracy is “lifted” before star is unbound
⇒ ideal gas EOS
⇒ expansion
⇒ cooling
(e.g., nova, Type I X-ray Burst)
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Thermal Stability Conditions

In hydrostatic equilibrium

dPc

Pc
=

4

3

dρc

ρc

Using general EOS of form (a = b = 1 for ideal gas)

dP

P
= a

dρ

ρ
+ b

dT

T

we obtain (
4

3
− a

)
dρc

ρc
= b

dTc

Tc

for a < 4/3 contraction causes heating (and vice versa)

for degenerate gas a & 4/3: expansion → heating
⇒ unstable
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Thin Shell Instability

Assume thin shell of mass ∆m, temperature T , density ρ,
thickness l located inside star of radius R.
Assume shell has a fixed lower boundary at r0 and an upper
boundary of r .
Assume a the shell is “thin”, i.e., l = r − r0 ¿ r

In thermal equilibrium the energy that flows out of the shell is
balanced by nuclear reactions

F (r)− F (r0) =

∫ r

r0

εnuc4πr2ρ dr

for a non-degenerate gas, if there is excess energy generation
the shell will expand, or contract otherwise
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Thin Shell Instability

The mass of the shell is ∆m ≈ 4πr 2
0 lρ, (l = r − r0)

and therefore we have for the density

dρ

ρ
= −dl

l
= −dr

l
= −dr

r

r

l

in hydrostatic equilibrium, the pressure in the shell depends on the layers
above and varies as r−4:

dP

P
= −4

dr

r
= 4

l

r

dρ

ρ

using the general EOS we obtain„
4

l

r
− a

«
dρ

ρ
= b

dT

T

since b > 0, to have ρ ↓→ T ↓ we require 4l/r > a

For a thin shell l/r → 0, hence ρ ↓→ T ↑ ⇒ instability!
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