Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 26: Global Stability of Stars

▲ 同 ▶ → 三 ▶

Overview

1 Recap

- Eddington ("Standard" Stellar Model)
- Final Quiz on Eddington

2 Stellar Stability

- Secular Thermal Stability (The Stellar Thermometer)
- Degenerate Thermonuclear Runaway
- Thin Shell Instability

Eddington Model

- usually star burns most fuel in center (high F/m)
- usually opacity increases outward (high κ)
- \Rightarrow Eddington makes simple assumption:

$$\frac{\mathrm{d}P_{\rm rad}}{\mathrm{d}P} = \frac{L}{4\pi c GM} \kappa \eta \,, \quad \kappa \eta = {\rm constant} = \kappa_{\rm surf}$$
 where $\kappa_{\rm surf}$ is the surface opacity $(\eta = 0)$ we now have

$$\frac{\mathrm{d}P_{\mathsf{rad}}}{\mathrm{d}P} = \frac{L}{4\pi c G M \kappa_{\mathsf{surf}}} = \mathsf{constant}$$

and obtain

V

$$P_{\rm rad} = \frac{L}{4\pi c G M \kappa_{\rm surf}} P$$

ullet \Rightarrow constant ratio of gas pressure to total pressure

・ 同 ト ・ ヨ ト ・ ヨ ト

Eddington Model

From

$$T = \left[\frac{3\mathcal{R}(1-\beta)}{a\mu\beta}\right]^{1/3}\rho^{1/3}$$

• and ${\it P} = {\cal R} T \rho / \mu \beta$ we have

$$P = K \rho^{4/3}, \quad K = \left[\frac{3\mathcal{R}^4(1-\beta)}{a\mu^4\beta^4}\right]^{1/3}$$

• \Rightarrow polytrope of index $n = 3 \Rightarrow$

$$M = 4\pi M_3 \left(\frac{K}{\pi G}\right)^{3/2}$$

 $\bullet \Rightarrow \textit{Eddington Quadratic Equation}$

$$1-\beta = 0.003 \left(\frac{M}{\mathsf{M}_{\odot}}\right)^2 \mu^4 \beta^4$$

Eddington ("Standard" Stellar Model) Final Quiz on Eddington

Eddington Quadratic Equation

・ロト ・同ト ・ヨト ・ヨト

Properties Eddington Model

- for given composition (fixed μ), β decreases as M increases
- inserting the solution function $\beta(M,\mu)$ into $L = L^*_{edd}(1-\beta)$ we obtain

$$L = 0.003 \, rac{4\pi c G \mathrm{M}_\odot}{\kappa_{\mathsf{surf}}} \mu^4 eta (M,\mu)^4 igg(rac{M}{\mathrm{M}_\odot}igg)^3$$

- recover mass-luminosity relation
- as star evolves, μ increases, hence it gets closer to Eddington limit and its luminosity rises; but unless the star is well mixed (e.g., fully convective), there will no longer be a uniform μ throughout the star

Eddington ("Standard" Stellar Model) Final Quiz on Eddington

・ロト ・同ト ・ヨト ・ヨト

M-L Quiz Solution

For $M \to \infty$, recover the relation $L \propto M$ from

$$L = 0.003 \, rac{4\pi c G \mathsf{M}_\odot}{\kappa_{\mathsf{surf}}} \mu^4 eta (M,\mu)^4 igg(rac{M}{\mathsf{M}_\odot}igg)^3$$

and

$$1 - \beta = 0.003 \left(\frac{M}{\mathsf{M}_{\odot}}\right)^2 \mu^4 \beta^4$$

In the second equation, the right hand side is finate $(0 < \beta < 1)$ hence as $M \to \infty$ on the right hand side $\beta \to 0$ is required. This menas that on the left hand side we can neglect β , and we have $\beta^4 \propto M^{-2}$. If we put this into the first equation, we are left with only one power in M, hence $L \propto M$.

Image: A image: A

Overview

Recap

- Eddington ("Standard" Stellar Model)
- Final Quiz on Eddington

2 Stellar Stability

- Secular Thermal Stability (The Stellar Thermometer)
- Degenerate Thermonuclear Runaway
- Thin Shell Instability

Recap Stellar Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

Image: A = A

Overview

- Iocal instabilities:
 - convection (Rayleigh Taylor instability)
 - semiconvection (layered convection)
 - thermohaline convection (salt finger instability)
 - rotation: e.g.:
 - shear instabilities (Kelvin-Helmholtz instability)
 - circulations (Eddington-Sweet)
 - etc.
 - magnetic instabilities: e.g.,
 - Parker instability,
 - dynamos,
 - etc.
- global instabilities
 - thermal instabilities
 - global
 - thin shell instability
 - dynamical instabilities

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

▲ 同 ▶ → 三 ▶

Virial Theorem: Ideal Gas without radiation

• Recall Virial Theorem:

$$3\int_0^M \frac{P}{\rho}\,\mathrm{d}m = -\Omega$$

• Ideal gas without radiation:

$$U = -rac{1}{2}\Omega$$

• for the total energy of the star we hence have:

$$E = U + \Omega = \frac{1}{2}\Omega = -U$$

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

(日) (同) (三) (三)

э

Quiz

What is the specific internal energy of gas and of radiation?

$$u_{\mathsf{gas}} = \frac{\mathcal{R}T}{\mu}, \quad u_{\mathsf{rad}} = \frac{aT^4}{\rho}$$

Note:

$$P_{\text{gas}} = rac{\mathcal{R} T
ho}{\mu} \,, \quad P_{\text{rad}} = rac{1}{3} a T^4$$

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

Virial Theorem: Ideal Gas with radiation

• Virial Theorem:

$$3\int_0^M \frac{P}{\rho}\,\mathrm{d}m = -\Omega$$

• Ideal gas with radiation:

$$\frac{P}{\rho} = \frac{P_{\text{gas}}}{\rho} + \frac{P_{\text{rad}}}{\rho} = \frac{\mathcal{R}}{\mu}T + \frac{a}{3\rho}T^4 = \frac{2}{3}u_{\text{gas}} + \frac{1}{3}u_{\text{rad}}$$
$$-\Omega = 3\int_0^M \frac{P}{\rho} \,\mathrm{d}m = 3\int_0^M \left(\frac{2}{3}u_{\text{gas}} + \frac{1}{3}u_{\text{rad}}\right) \,\mathrm{d}m = 2U_{\text{gas}} + U_{\text{rad}}$$
$$U_{\text{gas}} = -\frac{1}{2}(\Omega + U_{\text{rad}})$$

 \Rightarrow radiation reduces "effective" gravity

• the total energy hence is

$$E = \Omega + U_{rad} + U_{gas} = \frac{1}{2}(\Omega + U_{rad}) = -U_{gas}$$

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

A B > A B >

Stellar Thermometer

- Rate of change of energy: $\dot{E} = L_{nuc} L$
- In thermal equilibrium: $L_{nuc} = L$
- Recall: $\left(\frac{\partial \ln \varepsilon_{\text{nuc}}}{\partial \ln T}\right)_{\rho} \ge 0$, $\left(\frac{\partial \ln \varepsilon_{\text{nuc}}}{\partial \ln \rho}\right)_{T} \ge 0$
- What happens if there is an imbalance? (recall E < 0)
 - Case L_{nuc} > L (Ė > 0): star expands, average T ↓, ρ↓
 ⇒ nuclear reaction rate decreases, L_{nuc}↓
 - Case L_{nuc} < L (Ė < 0): star contracts, average T ↑, ρ ↑ ⇒ nuclear reaction rate increases, L_{nuc} ↑
- \Rightarrow self-regulation
- \Rightarrow secular stability
- ullet \Rightarrow allows star to stay in thermal equilibrium for a long time.

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

(日)

Quiz

۲

۲

Can you think of a rection or nuclear process in a star where

$$\left(\frac{\partial \ln \varepsilon_{\text{nuc}}}{\partial \ln T}\right)_{\rho} = 0$$
$$\left(\frac{\partial \ln \varepsilon_{\text{nuc}}}{\partial \ln \rho}\right)_{T} = 0$$

Nuclear decays are (usually independent of T and ρ .

<ロト < 同ト < 三ト

Thermal instability in degenerate gas

• In degenerate star (degenerate gas EOS)

 $P = K \rho^{5/3}$

(for non-rel. deg. gas) pressure does not depend on \mathcal{T} .

- \Rightarrow no significant expansion, no drop in T or ρ (except due to the deviations from complete degeneracy)
- $T \uparrow \Rightarrow \varepsilon_{nuc} \uparrow \Rightarrow T \uparrow \Rightarrow \dots$ thermonuclear runaway
- two possible outcomes are:
 - enough fuel is burned to unbind star (layers)
 ⇒ supernova
 - degeneracy is "lifted" before star is unbound
 - \Rightarrow ideal gas EOS
 - $\Rightarrow \text{expansion}$
 - \Rightarrow cooling
 - (e.g., nova, Type I X-ray Burst)

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

Thermal Stability Conditions

• In hydrostatic equilibrium

$$\frac{\mathrm{d}P_{\rm c}}{P_{\rm c}} = \frac{4}{3}\frac{\mathrm{d}\rho_{\rm c}}{\rho_{\rm c}}$$

• Using general EOS of form (a = b = 1 for ideal gas)

$$\frac{\mathrm{d}P}{P} = a\frac{\mathrm{d}\rho}{\rho} + b\frac{\mathrm{d}T}{T}$$

we obtain

$$\left(\frac{4}{3}-a\right)\frac{\mathrm{d}
ho_{\mathsf{c}}}{
ho_{\mathsf{c}}}=b\frac{\mathrm{d}T_{\mathsf{c}}}{T_{\mathsf{c}}}$$

- for a < 4/3 contraction causes heating (and vice versa)
- for degenerate gas a ≥ 4/3: expansion → heating ⇒ unstable

< ロ > < 同 > < 回 > < 回 >

Thin Shell Instability

Assume thin shell of mass Δm, temperature T, density ρ, thickness l located inside star of radius R.
 Assume shell has a fixed lower boundary at r₀ and an upper boundary of r.
 Assume a the shell is "thin", i.e., l = r - r₀ ≪ r

• In thermal equilibrium the energy that flows out of the shell is balanced by nuclear reactions

$$F(r) - F(r_0) = \int_{r_0}^r \varepsilon_{\rm nuc} 4\pi r^2 \rho \, \mathrm{d}r$$

• for a non-degenerate gas, if there is excess energy generation the shell will expand, or contract otherwise

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

▲ 伊 ▶ ▲ 三 ▶

Thin Shell Instability

• The mass of the shell is $\Delta m \approx 4\pi r_0^2 I \rho$, $(I = r - r_0)$ and therefore we have for the density

$$\frac{\mathrm{d}\rho}{\rho} = -\frac{\mathrm{d}I}{I} = -\frac{\mathrm{d}r}{I} = -\frac{\mathrm{d}r}{r}\frac{r}{I}$$

• in hydrostatic equilibrium, the pressure in the shell depends on the layers above and varies as r^{-4} :

$$\frac{\mathrm{d}P}{P} = -4\frac{\mathrm{d}r}{r} = 4\frac{l}{r}\frac{\mathrm{d}\rho}{\rho}$$

using the general EOS we obtain

$$\left(4\frac{l}{r}-a\right)\frac{\mathrm{d}\rho}{\rho}=b\frac{\mathrm{d}T}{T}$$

- since b > 0, to have $\rho \downarrow \rightarrow T \downarrow$ we require 4I/r > a
- For a thin shell $I/r \rightarrow 0$, hence $\rho \downarrow \rightarrow T \uparrow \Rightarrow$ instability!