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Overview

local instabilities:
convection (Rayleigh Taylor instability)
semiconvection (layered convection)
thermohaline convection (salt finger instability)
rotation: e.g.:

shear instabilities (Kelvin-Helmholtz instability)
circulations (Eddington-Sweet)
etc.

magnetic instabilities: e.g.,
Parker instability,
dynamos,
etc.

global instabilities
thermal instabilities

global
thin shell instability

dynamical instabilities
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Stellar Thermometer

Rate of change of energy: Ė = Lnuc − L

In thermal equilibrium: Lnuc = L

Recall:
(

∂ ln εnuc
∂ ln T

)
ρ
≥ 0,

(
∂ ln εnuc
∂ ln ρ

)
T
≥ 0

What happens if there is an imbalance? (recall E < 0)

Case Lnuc > L (Ė > 0):
star expands, average T ↓, ρ ↓
⇒ nuclear reaction rate decreases, Lnuc ↓
Case Lnuc < L (Ė < 0):
star contracts, average T ↑, ρ ↑
⇒ nuclear reaction rate increases, Lnuc ↑

⇒ self-regulation

⇒ secular stability

⇒ allows star to stay in thermal equilibrium for a long time.
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Thermal instability in degenerate gas

In degenerate star (degenerate gas EOS)

P = Kρ5/3

(for non-rel. deg. gas) pressure does not depend on T .

⇒ no significant expansion, no drop in T or ρ
(except due to the deviations from complete degeneracy)

T ↑⇒ εnuc ↑⇒ T ↑⇒ . . . thermonuclear runaway
two possible outcomes are:

enough fuel is burned to unbind star (layers)
⇒ supernova
degeneracy is “lifted” before star is unbound
⇒ ideal gas EOS
⇒ expansion
⇒ cooling
(e.g., nova, Type I X-ray Burst)
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Thermal Stability Conditions

In hydrostatic equilibrium

Pc =
3
√

4πBnGM2/3ρ
4/3
c ⇒ dPc

Pc
=

4

3

dρc

ρc

Using general EOS of form (a = b = 1 for ideal gas)

dP

P
= a

dρ

ρ
+ b

dT

T

we obtain (
4

3
− a

)
dρc

ρc
= b

dTc

Tc

for a < 4/3 contraction causes heating (and vice versa)

for degenerate gas a & 4/3: expansion → heating
⇒ unstable
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Thin Shell Instability

Assume thin shell of mass ∆m, temperature T , density ρ,
thickness l located inside star of radius R.
Assume shell has a fixed lower boundary at r0 and an upper
boundary of r .
Assume a the shell is “thin”, i.e., l = r − r0 ¿ r

In thermal equilibrium the energy that flows out of the shell is
balanced by nuclear reactions

F (r)− F (r0) =

∫ r

r0

εnuc4πr2ρ dr

for a non-degenerate gas, if there is excess energy generation
the shell will expand, or contract otherwise
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Thin Shell Instability

The mass of the shell is ∆m ≈ 4πr 2
0 lρ, (l = r − r0)

and therefore we have for the density

dρ

ρ
= −dl

l
= −dr

l
= −dr

r

r

l

in hydrostatic equilibrium, the pressure in the shell depends on the layers
above and varies as r−4:

dP

P
= −4

dr

r
= 4

l

r

dρ

ρ

using the general EOS we obtain„
4

l

r
− a

«
dρ

ρ
= b

dT

T

since b > 0, to have ρ ↓→ T ↓ we require 4l/r > a

For a thin shell l/r → 0, hence ρ ↓→ T ↑ ⇒ instability!
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Quiz

What happend if you heat a (non-rel.) degenerate thin shell?
What happens in a “plane parallel” approximation?
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Dynamical Stability

Assumptions and method:

in hydrostatic equilibrium, pressure gradients balance gravity;
this case we studied so far

following our approach so far, we will look at radial
perturbations (contraction and expansion of layers)
⇒ assuming spherical symmetry

Method of analysis:
Will a temporary contraction (expansion) lead to restoration
to original state or lead to further contraction (expansion)?
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Dynamical Stability

At point m(r) the pressure is given by integrating the
hydrostatic momentum equation, assuming P(M) = 0:

Ph(m) =

∫ M

m

Gm

4πr4
dm

where, as usual, the density if given by

ρ =
1

4πr2

dm

dr

assume relative compression everywhere by ε, i.e., we have
new radius coordinates r ′ defined by

r ′ = r − εr = r(1− ε)
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Dynamical Stability

Using for ε ¿ 1 the approximation

(1± ε)x ≈ 1± xε

from

ρ =
1

4πr2

dm

dr

we obtain

ρ′ =
1

4π(r(1− ε))2
dm

dr

dr

dr ′
=

ρ

(1− ε)3
≈ ρ(1 + 3ε)

and for an adiabatic compression, P ∝ ργad ,

P ′ = P (1 + 3ε)γad ≈ P (1 + 3εγad)
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Dynamical Stability

For the hydrostatic equilibrium pressure,

Ph(m) =

∫ M

m

Gm

4πr4
dm ,

we now obtain

Ph
′(m) =

∫ M

m

Gm

4π(r(1− ε))4
dm ≈ Ph (1 + 4ε)
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Dynamical Stability

Initially, in the unperturbed hydrostatic star we have P = Ph

generally, we will find P ′ 6= Ph
′

to restore equilibrium, for the case of compression, we need

P ′ > Ph
′

so that the star will re-expand, i.e.,

P (1 + 3εγad) > P (1 + 4ε)

1 + 3εγad > 1 + 4ε

γad >
4

3

this is the condition for dynamical stability

the same result is obtained for expansion
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Dynamical Stability

Notes:

It can be shown that if γad > 4/3 everywhere in the star, it is
dynamically stable

It is neutrally stable if γad = 4/3 everywhere in the star

global dynamical instability of the star results if∫ M

0

(
γad −

4

3

)
P

ρ
dm < 0

regions of high P/ρ (core) hence can dominate the global
stability of the star
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(In)Stability from the EOS

simple equations of state:

ideal gas: γad = 5/3 ⇒ stability
non-relativistic degenerate gas: γad = 5/3 ⇒ stability
relativistic degenerate gas: γad = 4/3 ⇒ neutral stability
(Chandrasekhar limit)
pure radiation gas: γad = 4/3 ⇒ neutral stability

ideal gas with radiation

γad =
5β2 + 8(1− β)(4 + β)

3β2 + 6(1− β)(4 + β)

for β → 0 we obtain γad → 4/3 (radiation dominated)

this is the case for star of increasingly higher mass
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Stability of a Radiation Star

Note that for pure radiation,

P

ρ
= urad/3 ,

and the viral theorem gives

−Ω = 3

∫ M

0

P

ρ
dm = Urad = U

hence the total energy is

E = Ω + U = 0

⇒ the star is neutrally bound
⇒ contraction or expansion does not cost energy!

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 27: Dynamical Stability of Stars



Recap
Stellar Stability

Dynamical Stability
Cases of Dynamical (In)Stability

Instability due to Ionization

For the simple case of ionization of hydrogen gas we obtained
the adiabatic index

γad =
5 +

(
5
2 + χ

kBT

)2
x(1− x)

3 +

[
3
2 +

(
3
2 + χ

kBT

)2
]
x(1− x)

with a minimum at x = 0.5, and for the χ = 10kBT we
obtained γad = 1.21.

for x = 0 and x = 1 we have γad = 5/3 (stable)

for χ ≈ kBT we find γad < 4/3 for 0.18 < x < 0.82

⇒ ionization can lead to instability

however, interior of stars usually mostly ionized
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Instability due other Processes

We recall

electron-positron pair creation instability

iron photo-disintegration

helium photo-disintegration

Concluding, for very massive stars pressure increases stronger due
to general relativity, i.e.,

Ph
′
,GR > Ph

′

⇒ the critical value for γad increases above 4/3.
⇒ very massive radiation dominated star cannot be stable
(mass limit: ∼ 100, 000 M¯)
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