Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

A (a) > (b) = (b) (a)

▲ □ ▶ ▲ □ ▶ ▲

Overview

Recap

- Secular Thermal Stability (The Stellar Thermometer)
- Degenerate Thermonuclear Runaway
- Thin Shell Instability

2 Stellar Stability

- Dynamical Stability
- Cases of Dynamical (In)Stability

Recap Stellar Stability Stellar Stability Thin Shell Instability

- 4 同 ト 4 ヨ ト 4 ヨ

Overview

- Iocal instabilities:
 - convection (Rayleigh Taylor instability)
 - semiconvection (layered convection)
 - thermohaline convection (salt finger instability)
 - rotation: e.g.:
 - shear instabilities (Kelvin-Helmholtz instability)
 - circulations (Eddington-Sweet)
 - etc.
 - magnetic instabilities: e.g.,
 - Parker instability,
 - dynamos,
 - etc.
- global instabilities
 - thermal instabilities
 - global
 - thin shell instability
 - dynamical instabilities

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

Stellar Thermometer

- Rate of change of energy: $\dot{E} = L_{nuc} L$
- In thermal equilibrium: $L_{nuc} = L$
- Recall: $\left(\frac{\partial \ln \varepsilon_{\text{nuc}}}{\partial \ln T}\right)_{\rho} \ge 0$, $\left(\frac{\partial \ln \varepsilon_{\text{nuc}}}{\partial \ln \rho}\right)_{T} \ge 0$
- What happens if there is an imbalance? (recall E < 0)
 - Case L_{nuc} > L (Ė > 0): star expands, average T ↓, ρ↓
 ⇒ nuclear reaction rate decreases, L_{nuc}↓
 - Case L_{nuc} < L (E < 0): star contracts, average T ↑, ρ ↑ ⇒ nuclear reaction rate increases, L_{nuc} ↑
- $\bullet \Rightarrow \mathsf{self}\mathsf{-}\mathsf{regulation}$
- \Rightarrow secular stability
- ullet \Rightarrow allows star to stay in thermal equilibrium for a long time.

Thermal instability in degenerate gas

• In degenerate star (degenerate gas EOS)

 $P = K \rho^{5/3}$

(for non-rel. deg. gas) pressure does not depend on \mathcal{T} .

- \Rightarrow no significant expansion, no drop in T or ρ (except due to the deviations from complete degeneracy)
- $T \uparrow \Rightarrow \varepsilon_{nuc} \uparrow \Rightarrow T \uparrow \Rightarrow \dots$ thermonuclear runaway
- two possible outcomes are:
 - enough fuel is burned to unbind star (layers)
 ⇒ supernova
 - degeneracy is "lifted" before star is unbound
 - \Rightarrow ideal gas EOS
 - $\Rightarrow \text{expansion}$
 - \Rightarrow cooling
 - (e.g., nova, Type I X-ray Burst)

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

Thermal Stability Conditions

• In hydrostatic equilibrium

$$P_{\rm c} = \sqrt[3]{4\pi} B_n G M^{2/3} \rho_c^{4/3} \quad \Rightarrow \quad \frac{{\rm d} P_{\rm c}}{P_{\rm c}} = \frac{4}{3} \frac{{\rm d} \rho_{\rm c}}{\rho_{\rm c}}$$

• Using general EOS of form (a = b = 1 for ideal gas)

$$\frac{\mathrm{d}P}{P} = a\frac{\mathrm{d}\rho}{\rho} + b\frac{\mathrm{d}T}{T}$$

we obtain

$$\left(\frac{4}{3} - a\right)\frac{\mathrm{d}\rho_{\mathsf{c}}}{\rho_{\mathsf{c}}} = b\frac{\mathrm{d}T_{\mathsf{c}}}{T_{\mathsf{c}}}$$

- for a < 4/3 contraction causes heating (and vice versa)
- for degenerate gas a ≥ 4/3: expansion → heating ⇒ unstable

Thin Shell Instability

Assume thin shell of mass Δm, temperature T, density ρ, thickness l located inside star of radius R.
 Assume shell has a fixed lower boundary at r₀ and an upper boundary of r.
 Assume a the shell is "thin", i.e., l = r - r₀ ≪ r

• In thermal equilibrium the energy that flows out of the shell is balanced by nuclear reactions

$$F(r) - F(r_0) = \int_{r_0}^r \varepsilon_{\rm nuc} 4\pi r^2 \rho \, \mathrm{d}r$$

• for a non-degenerate gas, if there is excess energy generation the shell will expand, or contract otherwise

Secular Thermal Stability (The Stellar Thermometer) Degenerate Thermonuclear Runaway Thin Shell Instability

/□ ▶ < 글 ▶ < 글

Thin Shell Instability

• The mass of the shell is $\Delta m \approx 4\pi r_0^2 I \rho$, $(I = r - r_0)$ and therefore we have for the density

$$\frac{\mathrm{d}\rho}{\rho} = -\frac{\mathrm{d}I}{I} = -\frac{\mathrm{d}r}{I} = -\frac{\mathrm{d}r}{r}\frac{r}{I}$$

• in hydrostatic equilibrium, the pressure in the shell depends on the layers above and varies as r^{-4} :

$$\frac{\mathrm{d}P}{P} = -4\frac{\mathrm{d}r}{r} = 4\frac{l}{r}\frac{\mathrm{d}\rho}{\rho}$$

using the general EOS we obtain

$$\left(4\frac{l}{r}-a\right)\frac{\mathrm{d}\rho}{\rho}=b\frac{\mathrm{d}T}{T}$$

- since b > 0, to have $\rho \downarrow \rightarrow T \downarrow$ we require 4I/r > a
- For a thin shell $I/r \rightarrow 0$, hence $\rho \downarrow \rightarrow T \uparrow \Rightarrow$ instability!

Secular Thermal Stability (The Stellar Thermometer Degenerate Thermonuclear Runaway Thin Shell Instability

What happend if you heat a (non-rel.) degenerate thin shell? What happens in a "plane parallel" approximation?

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 27: Dynamical Stability of Stars

□ > < = > <

Overview

1 Recap

- Secular Thermal Stability (The Stellar Thermometer)
- Degenerate Thermonuclear Runaway
- Thin Shell Instability

2 Stellar Stability

- Dynamical Stability
- Cases of Dynamical (In)Stability

Dynamical Stability

Assumptions and method:

- in hydrostatic equilibrium, pressure gradients balance gravity; this case we studied so far
- following our approach so far, we will look at radial perturbations (contraction and expansion of layers)
 ⇒ assuming spherical symmetry
- Method of analysis:

Will a temporary contraction (expansion) lead to restoration to original state or lead to further contraction (expansion)?

Dynamical Stability

 At point m(r) the pressure is given by integrating the hydrostatic momentum equation, assuming P(M) = 0:

$$P_{\rm h}(m) = \int_m^M \frac{Gm}{4\pi r^4} \, \mathrm{d}m$$

• where, as usual, the density if given by

$$\rho = \frac{1}{4\pi r^2} \frac{\mathrm{d}m}{\mathrm{d}r}$$

 assume *relative* compression everywhere by ε, i.e., we have new radius coordinates r' defined by

$$r'=r-\varepsilon r=r(1-\varepsilon)$$

伺 ト イ ヨ ト イ ヨ

Dynamical Stability Cases of Dynamical (In)Stability

- 4 同 6 4 日 6 4 日 6

Dynamical Stability

Using for $\varepsilon \ll 1$ the approximation

$$(1\pm\varepsilon)^{x}\approx 1\pm x\varepsilon$$

from

$$\rho = \frac{1}{4\pi r^2} \frac{\mathrm{d}m}{\mathrm{d}r}$$

we obtain

$$\rho' = \frac{1}{4\pi (r(1-\varepsilon))^2} \frac{\mathrm{d}m}{\mathrm{d}r} \frac{\mathrm{d}r}{\mathrm{d}r'} = \frac{\rho}{(1-\varepsilon)^3} \approx \rho(1+3\varepsilon)$$

and for an adiabatic compression, ${\it P} \propto \rho^{\gamma_{\rm ad}},$

$$P' = P \left(1 + 3\varepsilon\right)^{\gamma_{\mathsf{ad}}} pprox P \left(1 + 3\varepsilon\gamma_{\mathsf{ad}}
ight)$$

- 4 同 6 4 日 6 4 日 6

Dynamical Stability

For the hydrostatic equilibrium pressure,

$$P_{\rm h}(m) = \int_m^M \frac{Gm}{4\pi r^4} \,\mathrm{d}m\,,$$

we now obtain

$$P_{\rm h}'(m) = \int_m^M \frac{Gm}{4\pi (r(1-\varepsilon))^4} \, \mathrm{d}m \approx P_{\rm h} \left(1+4\varepsilon\right)$$

Dynamical Stability

- Initially, in the unperturbed hydrostatic star we have $P = P_{\rm h}$
- generally, we will find $P' \neq P_h'$
- to restore equilibrium, for the case of compression, we need

 $P' > P_{\rm h}'$

so that the star will re-expand, i.e.,

$$egin{aligned} P\left(1+3arepsilon\gamma_{\mathsf{ad}}
ight) &> P\left(1+4arepsilon
ight) \ 1+3arepsilon\gamma_{\mathsf{ad}}>1+4arepsilon\ \gamma_{\mathsf{ad}}>rac{4}{3} \end{aligned}$$

- this is the condition for dynamical stability
- the same result is obtained for expansion

(4月) (1日) (日)

Dynamical Stability

Notes:

- It can be shown that if $\gamma_{\rm ad} > 4/3$ everywhere in the star, it is dynamically stable
- It is neutrally stable if $\gamma_{\rm ad}=4/3$ everywhere in the star
- global dynamical instability of the star results if

$$\int_0^M \left(\gamma_{\mathsf{ad}} - \frac{4}{3}\right) \frac{P}{\rho} \, \mathsf{d}m < 0$$

• regions of high P/ρ (core) hence can dominate the global stability of the star

イロト イポト イラト イラト

(In)Stability from the EOS

- simple equations of state:
 - ideal gas: $\gamma_{\rm ad} = 5/3 \Rightarrow {\rm stability}$
 - non-relativistic degenerate gas: $\gamma_{\rm ad}=5/3$ \Rightarrow stability
 - relativistic degenerate gas: $\gamma_{\rm ad}=4/3 \Rightarrow$ neutral stability (Chandrasekhar limit)
 - pure radiation gas: $\gamma_{\rm ad} = 4/3 \Rightarrow$ neutral stability
- ideal gas with radiation

$$\gamma_{\rm ad} = \frac{5\beta^2 + 8(1-\beta)(4+\beta)}{3\beta^2 + 6(1-\beta)(4+\beta)}$$

for $\beta \rightarrow 0$ we obtain $\gamma_{ad} \rightarrow 4/3$ (radiation dominated)

• this is the case for star of increasingly higher mass

-

Stability of a Radiation Star

• Note that for pure radiation,

$$\frac{P}{\rho} = u_{\rm rad}/3\,,$$

and the viral theorem gives

$$-\Omega = 3 \int_0^M \frac{P}{\rho} \,\mathrm{d}m = U_{\rm rad} = U$$

hence the total energy is

$$E = \Omega + U = 0$$

 \Rightarrow the star is neutrally bound

 \Rightarrow contraction or expansion does not cost energy!

- 4 同 6 4 日 6 4 日 6

Instability due to Ionization

• For the simple case of ionization of hydrogen gas we obtained the adiabatic index

$$\gamma_{\rm ad} = \frac{5 + \left(\frac{5}{2} + \frac{\chi}{k_{\rm B}T}\right)^2 x(1-x)}{3 + \left[\frac{3}{2} + \left(\frac{3}{2} + \frac{\chi}{k_{\rm B}T}\right)^2\right] x(1-x)}$$

with a minimum at x= 0.5, and for the $\chi=10 k_{\rm B} T$ we obtained $\gamma_{\rm ad}=$ 1.21.

- for x = 0 and x = 1 we have $\gamma_{ad} = 5/3$ (stable)
- for $\chi \approx k_{\rm B} T$ we find $\gamma_{\rm ad} < 4/3$ for 0.18 < x < 0.82
- ullet \Rightarrow ionization can lead to instability
- however, interior of stars usually mostly ionized

Instability due other Processes

We recall

- electron-positron pair creation instability
- iron photo-disintegration
- helium photo-disintegration

Concluding, for very massive stars pressure increases stronger due to general relativity, i.e.,

$$P_{h,GR}$$
 > P_{h}

⇒ the critical value for γ_{ad} increases above 4/3. ⇒ very massive radiation dominated star cannot be stable (mass limit: ~ 100,000 M_☉)