Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger $1,2,3$

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

 $\mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A}$

つくい

Stars and Stellar Evolution - Fall 2008 - Alexander Heger [Lecture 27: Dynamical Stability of Stars](#page-19-0)

4 17 18

<何> <ヨ> <ヨ

 200

Overview

1 [Recap](#page-1-0)

- [Secular Thermal Stability \(The Stellar Thermometer\)](#page-3-0)
- [Degenerate Thermonuclear Runaway](#page-4-0)
- **[Thin Shell Instability](#page-6-0)**

[Stellar Stability](#page-9-0)

- **•** [Dynamical Stability](#page-10-0)
- [Cases of Dynamical \(In\)Stability](#page-16-0)

a miller

- ∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ

 200

Overview

- **•** local instabilities:
	- convection (Rayleigh Taylor instability)
	- semiconvection (layered convection)
	- thermohaline convection (salt finger instability)
	- o rotation: e.g.:
		- · shear instabilities (Kelvin-Helmholtz instability)
		- circulations (Eddington-Sweet)
		- etc.
	- magnetic instabilities: e.g.,
		- Parker instability,
		- dynamos,
		- etc.
- global instabilities
	- **•** thermal instabilities
		- global
		- thin shell instability
	- dynamical instabilities

医阿雷氏阿雷氏征

 200

Stellar Thermometer

- Rate of change of energy: $\dot{E} = L_{\text{nuc}} L$
- In thermal equilibrium: $L_{\text{nuc}} = L$
- Recall: $\left(\frac{\partial \ln \varepsilon_{\text{nuc}}}{\partial \ln T}\right)_\rho \geq 0$, $\left(\frac{\partial \ln \varepsilon_{\text{nuc}}}{\partial \ln \rho}\right)$ $\tau \geq 0$
- What happens if there is an imbalance? (recall $E < 0$)
	- Case $L_{\text{nuc}} > L$ ($\dot{E} > 0$): star expands, average $T \downarrow$, $\rho \downarrow$ \Rightarrow nuclear reaction rate decreases, $L_{\text{nuc}} \downarrow$
	- Case $L_{\text{nuc}} < L$ ($E < 0$): star contracts, average $T \uparrow$, $\rho \uparrow$ \Rightarrow nuclear reaction rate increases, $L_{\text{nuc}} \uparrow$
- $\bullet \Rightarrow$ self-regulation
- $\bullet \Rightarrow$ secular stability
- $\bullet \Rightarrow$ allows star to stay in thermal equilibrium for a long time.

メロメ メ母メ メミメ メミメ

つくい

Thermal instability in degenerate gas

• In degenerate star (degenerate gas EOS)

$$
P=K\rho^{5/3}
$$

(for non-rel. deg. gas) pressure does not depend on T.

- $\bullet \Rightarrow$ no significant expansion, no drop in T or ρ (except due to the deviations from complete degeneracy)
- \bullet $\top \uparrow \Rightarrow \varepsilon_{\text{nuc}} \uparrow \Rightarrow \top \uparrow \Rightarrow \ldots$ thermonuclear runaway
- two possible outcomes are:
	- enough fuel is burned to unbind star (layers) ⇒ supernova
	- degeneracy is "lifted" before star is unbound
		- ⇒ ideal gas EOS
		- \Rightarrow expansion
		- ⇒ cooling
		- (e.g., nova, Type I X-ray Burst)

[Secular Thermal Stability \(The Stellar Thermometer\)](#page-3-0) [Degenerate Thermonuclear Runaway](#page-4-0) [Thin Shell Instability](#page-6-0)

つくい

Thermal Stability Conditions

• In hydrostatic equilibrium

$$
P_{\rm c} = \sqrt[3]{4\pi} B_n G M^{2/3} \rho_c^{4/3} \quad \Rightarrow \quad \frac{\mathrm{d}P_{\rm c}}{P_{\rm c}} = \frac{4}{3} \frac{\mathrm{d}\rho_{\rm c}}{\rho_{\rm c}}
$$

• Using general EOS of form $(a = b = 1$ for ideal gas)

$$
\frac{\mathrm{d}P}{P} = a\frac{\mathrm{d}\rho}{\rho} + b\frac{\mathrm{d}T}{T}
$$

we obtain

$$
\left(\frac{4}{3} - a\right) \frac{d\rho_c}{\rho_c} = b \frac{d\,T_c}{T_c}
$$

- for $a < 4/3$ contraction causes heating (and vice versa)
- for degenerate gas $a \ge 4/3$: expansion \rightarrow heating ⇒ unstable

∢ロト ∢母ト ∢ヨト ∢ヨト

つくい

Thin Shell Instability

 \bullet Assume thin shell of mass Δm , temperature T, density ρ , thickness l located inside star of radius R. Assume shell has a fixed lower boundary at r_0 and an upper boundary of r. Assume a the shell is "thin", i.e., $l = r - r_0 \ll r$

• In thermal equilibrium the energy that flows out of the shell is balanced by nuclear reactions

$$
F(r) - F(r_0) = \int_{r_0}^r \varepsilon_{\rm nuc} 4\pi r^2 \rho dr
$$

• for a non-degenerate gas, if there is excess energy generation the shell will expand, or contract otherwise

[Secular Thermal Stability \(The Stellar Thermometer\)](#page-3-0) [Degenerate Thermonuclear Runaway](#page-4-0) [Thin Shell Instability](#page-6-0)

<何> <ヨ> <ヨ

つくへ

Thin Shell Instability

The mass of the shell is $\Delta m \approx 4\pi r_0^2 l \rho$, $(l = r - r_0)$ and therefore we have for the density

$$
\frac{\mathrm{d}\rho}{\rho} = -\frac{\mathrm{d}I}{I} = -\frac{\mathrm{d}r}{I} = -\frac{\mathrm{d}r}{r}\frac{r}{I}
$$

• in hydrostatic equilibrium, the pressure in the shell depends on the layers above and varies as r^{-4} :

$$
\frac{\mathrm{d}P}{P} = -4\frac{\mathrm{d}r}{r} = 4\frac{l}{r}\frac{\mathrm{d}\rho}{\rho}
$$

• using the general EOS we obtain

$$
\left(4\frac{l}{r}-a\right)\frac{\mathrm{d}\rho}{\rho}=b\frac{\mathrm{d}T}{T}
$$

- since $b > 0$, to have $\rho \downarrow \rightarrow T \downarrow$ we require $41/r > a$
- For a thin shell $I/r \to 0$, hence $\rho \downarrow \to T \uparrow \Rightarrow$ instability!

イロト イ伊 ト イヨ ト イヨ

 2990

What happend if you heat a (non-rel.) degenerate thin shell? What happens in a "plane parallel" approximation?

Stars and Stellar Evolution - Fall 2008 - Alexander Heger [Lecture 27: Dynamical Stability of Stars](#page-0-0)

4 17 18

同→ (ヨ→ (ヨ

 200

Overview

[Recap](#page-1-0)

- [Secular Thermal Stability \(The Stellar Thermometer\)](#page-3-0)
- [Degenerate Thermonuclear Runaway](#page-4-0) \bullet
- **[Thin Shell Instability](#page-6-0)**

2 [Stellar Stability](#page-9-0)

- [Dynamical Stability](#page-10-0)
- [Cases of Dynamical \(In\)Stability](#page-16-0)

4 17 18

- ④ 伊 ≯ ④ 重 ≯ ④ 重

つくへ

Dynamical Stability

Assumptions and method:

- in hydrostatic equilibrium, pressure gradients balance gravity; this case we studied so far
- following our approach so far, we will look at radial perturbations (contraction and expansion of layers) \Rightarrow assuming spherical symmetry
- Method of analysis:

Will a temporary contraction (expansion) lead to restoration to original state or lead to further contraction (expansion)?

Dynamical Stability

• At point $m(r)$ the pressure is given by integrating the hydrostatic momentum equation, assuming $P(M) = 0$:

$$
P_{\rm h}(m) = \int_m^M \frac{Gm}{4\pi r^4} \, \mathrm{d}m
$$

• where, as usual, the density if given by

$$
\rho = \frac{1}{4\pi r^2} \frac{\mathrm{d}m}{\mathrm{d}r}
$$

• assume *relative* compression everywhere by ε , i.e., we have new radius coordinates r' defined by

$$
r'=r-\varepsilon r=r(1-\varepsilon)
$$

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$

つくへ

[Dynamical Stability](#page-10-0) [Cases of Dynamical \(In\)Stability](#page-16-0)

イロン イ何ン イヨン イヨン

性

 200

Dynamical Stability

Using for $\varepsilon \ll 1$ the approximation

$$
(1\pm\varepsilon)^x\approx 1\pm x\varepsilon
$$

from

$$
\rho = \frac{1}{4\pi r^2} \frac{\mathrm{d}m}{\mathrm{d}r}
$$

we obtain

$$
\rho' = \frac{1}{4\pi (r(1-\varepsilon))^2} \frac{dm}{dr} \frac{dr}{dr'} = \frac{\rho}{(1-\varepsilon)^3} \approx \rho(1+3\varepsilon)
$$

and for an adiabatic compression, $P \propto \rho^{\gamma_{\sf ad}}$,

$$
P' = P\left(1+3\varepsilon\right)^{\!\!\gamma_{\sf ad}} \approx P\left(1+3\varepsilon\gamma_{\sf ad}\right)
$$

イロン イ何ン イヨン イヨン

 299

э

Dynamical Stability

For the hydrostatic equilibrium pressure,

$$
P_{\rm h}(m)=\int_m^M\frac{Gm}{4\pi r^4}\,\mathrm{d}m\,,
$$

we now obtain

$$
P_{\rm h}'(m) = \int_m^M \frac{Gm}{4\pi (r(1-\varepsilon))^4} \, \mathrm{d}m \approx P_{\rm h} \left(1+4\varepsilon\right)
$$

つくへ

Dynamical Stability

- Initially, in the unperturbed hydrostatic star we have $P = P_h$
- generally, we will find $P' \neq P_{\sf h}'$
- to restore equilibrium, for the case of compression, we need

 $P' > P_h'$

so that the star will re-expand, i.e.,

$$
P(1+3\varepsilon\gamma_{\text{ad}}) > P(1+4\varepsilon)
$$

$$
1+3\varepsilon\gamma_{\text{ad}} > 1+4\varepsilon
$$

$$
\gamma_{\text{ad}} > \frac{4}{3}
$$

- **•** this is the condition for dynamical stability
- \bullet the same result is obtai[n](#page-13-0)ed for expansion

→ イ母 ト イヨ ト イヨ ト

つくへ

Dynamical Stability

Notes:

- It can be shown that if $\gamma_{ad} > 4/3$ everywhere in the star, it is dynamically stable
- It is neutrally stable if $\gamma_{\rm ad} = 4/3$ everywhere in the star
- **•** global dynamical *instability* of the star results if

$$
\int_0^M \left(\gamma_{\mathsf{ad}} - \frac{4}{3}\right) \frac{P}{\rho} \, \mathsf{d} m < 0
$$

• regions of high P/ρ (core) hence can dominate the global stability of the star

イロト イタト イモト イモト

つくへ

(In)Stability from the EOS

o simple equations of state:

- ideal gas: $\gamma_{\text{ad}} = 5/3 \Rightarrow$ stability
- non-relativistic degenerate gas: $\gamma_{\text{ad}} = 5/3 \Rightarrow$ stability
- relativistic degenerate gas: $\gamma_{\text{ad}} = 4/3 \Rightarrow$ neutral stability (Chandrasekhar limit)
- **•** pure radiation gas: $\gamma_{\text{ad}} = 4/3 \Rightarrow$ neutral stability
- ideal gas with radiation

$$
\gamma_{\text{ad}} = \frac{5\beta^2 + 8(1 - \beta)(4 + \beta)}{3\beta^2 + 6(1 - \beta)(4 + \beta)}
$$

for $\beta \rightarrow 0$ we obtain $\gamma_{ad} \rightarrow 4/3$ (radiation dominated)

• this is the case for star of increasingly higher mass

[Dynamical Stability](#page-10-0) [Cases of Dynamical \(In\)Stability](#page-16-0)

 \Box

- ④ 伊 ▶ ④ ヨ ▶ ④ ヨ ▶

 Ω

Stability of a Radiation Star

• Note that for pure radiation,

$$
\frac{P}{\rho} = u_{\rm rad}/3\,,
$$

and the viral theorem gives

$$
-\Omega = 3 \int_0^M \frac{P}{\rho} dm = U_{\text{rad}} = U
$$

hence the total energy is

$$
E=\Omega+U=0
$$

 \Rightarrow the star is neutrally bound

 \Rightarrow contraction or expansion does not cost energy!

∢ロト ∢母ト ∢ヨト ∢ヨト

 200

Instability due to Ionization

For the simple case of ionization of hydrogen gas we obtained the adiabatic index

$$
\gamma_{\text{ad}} = \frac{5 + \left(\frac{5}{2} + \frac{\chi}{k_{\text{B}}T}\right)^2 x (1 - x)}{3 + \left[\frac{3}{2} + \left(\frac{3}{2} + \frac{\chi}{k_{\text{B}}T}\right)^2\right] x (1 - x)}
$$

with a minimum at $x = 0.5$, and for the $y = 10k_BT$ we obtained $\gamma_{\rm ad} = 1.21$.

- for $x = 0$ and $x = 1$ we have $\gamma_{ad} = 5/3$ (stable)
- for $\chi \approx k_{\rm B}T$ we find $\gamma_{\rm ad} < 4/3$ for $0.18 < x < 0.82$
- $\bullet \Rightarrow$ ionization can lead to instability
- **•** however, interior of stars usually mostly ionized

Instability due other Processes

We recall

- electron-positron pair creation instability
- iron photo-disintegration
- helium photo-disintegration

Concluding, for very massive stars pressure increases stronger due to general relativity, i.e.,

$$
P_{\rm h,GR}^{\phantom{\rm {s}}'} > P_{\rm h}^{\phantom{\rm {s}}'}
$$

∢ロト ∢母ト ∢目ト ∢目ト

つくへ

 \Rightarrow the critical value for γ_{ad} increases above 4/3. \Rightarrow very massive radiation dominated star cannot be stable (mass limit: $\sim 100,000$ M $_{\odot}$)