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Thin Shell Instability

The mass of the shell is ∆m ≈ 4πr 2
0 lρ, (l = r − r0)

and therefore we have for the density

dρ

ρ
= −dl

l
= −dr

l
= −dr

r

r

l

in hydrostatic equilibrium, the pressure in the shell depends on the layers
above and varies as r−4:

dP

P
= −4

dr

r
= 4

l

r

dρ

ρ

using the general EOS we obtain„
4

l

r
− a

«
dρ

ρ
= b

dT

T

since b > 0, to have ρ ↓→ T ↓ we require 4l/r > a

For a thin shell l/r → 0, hence ρ ↓→ T ↑ ⇒ instability!
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Stability from the EOS

simple equations of state:
ideal gas: γad = 5/3 ⇒ stability
non-relativistic degenerate gas: γad = 5/3 ⇒ stability
relativistic degenerate gas: γad = 4/3 ⇒ neutral stability
pure radiation gas: γad = 4/3 ⇒ neutral stability

ideal gas with radiation

γad =
5β2 + 8(1− β)(4 + β)

3β2 + 6(1− β)(4 + β)

for β → 0 we obtain γad → 4/3 (radiation dominated)

ionization: γad can drop below 4/3

electron-positron pair creation, iron and helium disintegration:
γad can drop below 4/3

general relativity: critical value of γad > 4/3.
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Dynamical Stability

Summary

It can be shown that if γad > 4/3 everywhere in the star, it is
dynamically stable

It is neutrally stable if γad = 4/3 everywhere in the star

global dynamical instability of the star results if

〈γad〉P
ρ
≡

∫ M
0 γad

P
ρ dm∫ M

0
P
ρ dm

<
4

3
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Deviding line Between Ideal Gas and NR Deg. Gas

ideal gas pressure

P =
R
µ

ρT = K0ρT

⇒
log P = log K0 + log ρ + log T

(non-rel.) degenerate gas

P = K1ρ
5/3

⇒
log P = log K1 +

5

3
log ρ

the location where both pressure contributions become the
same is defined by

log ρ =
3

2
log T + const.
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Deviding line Between Ideal Gas and Rel. Deg. Gas

ideal gas pressure

P =
R
µ

ρT = K0ρT

⇒
log P = log K0 + log ρ + log T

relativistic degenerate gas

P = K1ρ
4/3

⇒
log P = log K2 +

4

3
log ρ

the location where both pressure contributions become the
same is defined by

log ρ = 3 log T + const.
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Deviding line Between Rel. and Non-Rel. Degenerate Gas

non-rel. degenerate gas

P = K1ρ
5/3

⇒
log P = log K1 +

5

3
log ρ

relativistic degenerate gas

P = K2ρ
4/3

⇒
log P = log K2 +

4

3
log ρ

the location where both pressure contributions become the
same is defined by

log ρ = 3 log

(
K2

K1

)
= const.
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Deviding line Between Ideal Gas and Radiation Pressure

ideal gas pressure

P =
R
µ

ρT = K0ρT

⇒
log P = log K0 + log ρ + log T

radiaiton pressure

P =
a

3
T 4

⇒
log P = log

(a

3

)
+ 4 log T

the location where both pressure contributions become the
same is defined by

log ρ = 3 log T + const.
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Regimes of Convection (local [in]stability)

Regimes of
convection as a
function of mass
(x-axis) and
fractional stellar
mass (y -axis) on
the Zero-Age
Main Sequence
(ZAMS).
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Regimes of the EOS for Main-Sequence Stars

Equation of
state in the
density-
temperature
diagram for
main sequence
stars.

(note reversal of
T and ρ)

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 28: Evolution of Stars - A View from the Center



Recap
Stellar Evolution

Next Class

Regimes of the Temperature-Density Plane
Regimes of Nuclear Burning
Regimes of Stellar Evolution

Burning Phases in Stars

20 M¯ star
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Regimes of Nuclear Burning

assume arbitrary minimum energy generation rate for burning
to becom important, say qmin ≈ 103 erg g−1 s−1

assume general power-law for energy generation rate

q = q0ρ
mT n

q rises above qmin for

log ρ = −m

n
log T +

1

m
log

(
qmin

q

)
In reality, n = n(T )
⇒ not straight lines but bent

hydrogen burning has different contributions
(pp chains, CNO cycle)

helium burning has contributions from 3α and 12C(α, γ)
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PP and CNO Cycle Competition

Fraction of the energy generation
by the CNO cycle during
hydrogen burning on the main
sequence for different stellar
masses as a function of the
integrated stellar luminosity “l”
as a radial coordinate, normalized
to the total luminosity L of the
star.

F (m) = l(m) =

∫ m

0
ε(m′)dm′
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Regimes of Burning

Regimes of
burning in the
temperature-
density
diagram
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Regimes of Stellar Evolution

Recall
Pc =

3
√

4πBnGM2/3ρ
4/3
c

for ideal gas, Pc = K0ρcTc and we obtain

ρc =
K 3

0

4πB3
nG 3

T 3
c

M2

⇒ log ρc = 3 log T − 2 log M + const.

for non-rel. degenerate gas Pc = K1ρ
5/3
c we obtain

ρc = 4π

(
B1.5G

K1

)3

M2

⇒ parallel lines at log ρc = 2 log M + const.
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Quiz

Find a relation for relativistic degenerate gas.

Work and discuss in groups of 2-3.

3 min

Please write up your solution.

Please sign with your names and to hand in.

(no grades)
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Quiz Solution

Find a relation for relativistic degenerate gas.

for rel. degenerate (electron) gas

Pc = K2ρ
4/3
c

in
Pc =

3
√

4πBnGM2/3ρ
4/3
c

we obtain (using M3 = (4B3)
−3/2)

M =
1√
4π

(
K2

GB3

)3/2

= 4πM3

(
K2

πG

)3/2

...the Chandrasekar Mass!
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Domains of Stellar Mass

Regimes of
stellar mass in
the
temperature-
density
diagram
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Evolution Tracks

Evolution of
Stars in the
temperature-
density
diagram
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Computer Lab

Class tomorrow, 10:10-11:00, Walter Library, room 575
Meet at reception on 5th floor on time
(class room is in secured area)

try to familiarize yourself with IDL (use physics computers)

have a look at WIKI on web bage
use this to report your experince, post questions.

Unix introduction
http://static.msi.umn.edu/tutorial/hardwareprogramming/intro to unix 06 07 06.pdf

emacs introduction
http://www.gnu.org/software/emacs/manual/emacs.html

FORTRAN introduction
http://www.cs.mtu.edu/ shene/COURSES/cs201/NOTES/intro.html
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