Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Overview

- Recap
 - Thin Shell Instability
 - Cases of Dynamical (In)Stability
 - Dynamical Stability
- Stellar Evolution
 - Regimes of the Temperature-Density Plane
 - Regimes of Nuclear Burning
 - Regimes of Stellar Evolution
- Next Class
 - Computer Lab

Thin Shell Instability

• The mass of the shell is $\Delta m \approx 4\pi r_0^2 I \rho$, $(I = r - r_0)$ and therefore we have for the density

$$\frac{\mathrm{d}\rho}{\rho} = -\frac{\mathrm{d}I}{I} = -\frac{\mathrm{d}r}{I} = -\frac{\mathrm{d}r}{r}\frac{r}{I}$$

• in hydrostatic equilibrium, the pressure in the shell depends on the layers above and varies as r^{-4} :

$$\frac{\mathrm{d}P}{P} = -4\frac{\mathrm{d}r}{r} = 4\frac{I}{r}\frac{\mathrm{d}\rho}{\rho}$$

using the general EOS we obtain

$$\left(4\frac{l}{r}-a\right)\frac{\mathrm{d}\rho}{\rho}=b\frac{\mathrm{d}T}{T}$$

- since b > 0, to have $\rho \downarrow \rightarrow T \downarrow$ we require 4I/r > a
- For a thin shell $I/r \to 0$, hence $\rho \downarrow \to T \uparrow \Rightarrow$ instability!

Stability from the EOS

- simple equations of state:
 - ideal gas: $\gamma_{ad} = 5/3 \Rightarrow \text{stability}$
 - non-relativistic degenerate gas: $\gamma_{\rm ad}=5/3\Rightarrow$ stability
 - ullet relativistic degenerate gas: $\gamma_{
 m ad}=4/3\Rightarrow$ neutral stability
 - pure radiation gas: $\gamma_{\rm ad} = 4/3 \Rightarrow {\rm neutral\ stability}$
- ideal gas with radiation

$$\gamma_{\mathsf{ad}} = \frac{5\beta^2 + 8(1 - \beta)(4 + \beta)}{3\beta^2 + 6(1 - \beta)(4 + \beta)}$$

for $\beta \to 0$ we obtain $\gamma_{ad} \to 4/3$ (radiation dominated)

- ionization: γ_{ad} can drop below 4/3
- electron-positron pair creation, iron and helium disintegration: $\gamma_{\rm ad}$ can drop below 4/3
- general relativity: critical value of $\gamma_{ad} > 4/3$.

Dynamical Stability

Summary

- It can be shown that if $\gamma_{\rm ad} > 4/3$ everywhere in the star, it is dynamically stable
- It is neutrally stable if $\gamma_{ad} = 4/3$ everywhere in the star
- global dynamical instability of the star results if

$$\langle \gamma_{\mathsf{ad}}
angle_{rac{P}{
ho}} \equiv rac{\int_0^M \gamma_{\mathsf{ad}} rac{P}{
ho} \, \mathsf{d} m}{\int_0^M rac{P}{
ho} \, \mathsf{d} m} < rac{4}{3}$$

Overview

- Recap
 - Thin Shell Instabilility
 - Cases of Dynamical (In)Stability
 - Dynamical Stability
- Stellar Evolution
 - Regimes of the Temperature-Density Plane
 - Regimes of Nuclear Burning
 - Regimes of Stellar Evolution
- Next Class
 - Computer Lab

Deviding line Between Ideal Gas and NR Deg. Gas

ideal gas pressure

$$P = \frac{\mathcal{R}}{\mu} \rho T = K_0 \rho T$$

 \Rightarrow

$$\log P = \log K_0 + \log \rho + \log T$$

• (non-rel.) degenerate gas

$$P=K_1\rho^{5/3}$$

 \Rightarrow

$$\log P = \log K_1 + \frac{5}{3} \log \rho$$

$$\log \rho = \frac{3}{2} \log T + \text{const.}$$

Deviding line Between Ideal Gas and Rel. Deg. Gas

ideal gas pressure

$$P = \frac{\mathcal{R}}{\mu} \rho T = K_0 \rho T$$

 \Rightarrow

$$\log P = \log K_0 + \log \rho + \log T$$

relativistic degenerate gas

$$P = K_1 \rho^{4/3}$$

 \Rightarrow

$$\log P = \log K_2 + \frac{4}{3} \log \rho$$

$$\log \rho = 3 \log T + \text{const.}$$

Deviding line Between Rel. and Non-Rel. Degenerate Gas

non-rel. degenerate gas

$$P = K_1 \rho^{5/3}$$

 \Rightarrow

$$\log P = \log K_1 + \frac{5}{3} \log \rho$$

^relativistic degenerate gas

$$P = K_2 \rho^{4/3}$$

 \Rightarrow

$$\log P = \log K_2 + \frac{4}{3} \log \rho$$

$$\log \rho = 3\log \left(\frac{K_2}{K_1}\right) = \text{const.}$$

Deviding line Between Ideal Gas and Radiation Pressure

• ideal gas pressure

$$P = \frac{\mathcal{R}}{\mu} \rho T = K_0 \rho T$$

 \Rightarrow

$$\log P = \log K_0 + \log \rho + \log T$$

radiaiton pressure

$$P = \frac{a}{3}T^4$$

 \Rightarrow

$$\log P = \log\left(\frac{a}{3}\right) + 4\log T$$

$$\log \rho = 3 \log T + \text{const.}$$

Regimes of the Equation of State

Equation of state in the temperaturedensity diagram

Regimes of Stability

Regimes of dynamic stability in the temperature-density diagram

Regimes of Convection (local [in]stability)

Regimes of convection as a function of mass (x-axis) and fractional stellar mass (y-axis) on the Zero-Age Main Sequence (ZAMS).

Regimes of the EOS for Main-Sequence Stars

Equation of state in the densitytemperature diagram for main sequence stars.

(note reversal of T and ρ)

Burning Phases in Stars

 $20\,M_{\odot}$ star

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	4 H → ^{cNO} ⁴ He
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ \rightarrow ¹² C ¹² C(α , γ) ¹⁶ O
C	Ne, Mg	Na	8.0	10³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	20 Ne $(\gamma,\alpha)^{16}$ O 20 Ne $(\alpha,\gamma)^{24}$ Mg
0	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si, Š	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

Regimes of Nuclear Burning

- assume arbitrary minimum energy generation rate for burning to becom important, say $q_{\rm min} \approx 10^3\,{\rm erg\,g^{-1}\,s^{-1}}$
- assume general power-law for energy generation rate

$$q = q_0 \rho^m T^n$$

 \bullet q rises above q_{\min} for

$$\log \rho = -\frac{m}{n} \log T + \frac{1}{m} \log \left(\frac{q_{\min}}{q}\right)$$

- In reality, n = n(T)
 ⇒ not straight lines but bent
- hydrogen burning has different contributions (pp chains, CNO cycle)
- helium burning has contributions from 3α and $^{12}C(\alpha,\gamma)$

PP and CNO Cycle Competition

Fraction of the energy generation by the CNO cycle during hydrogen burning on the main sequence for different stellar masses as a function of the integrated stellar luminosity "I" as a radial coordinate, normalized to the total luminosity *L* of the star.

$$F(m) = I(m) = \int_0^m \epsilon(m') dm'$$

Regimes of Burning

Regimes of burning in the temperaturedensity diagram

Regimes of Stellar Evolution

Recall

$$P_{\rm c} = \sqrt[3]{4\pi} B_n G M^{2/3} \rho_c^{4/3}$$

• for ideal gas, $P_c = K_0 \rho_c T_c$ and we obtain

$$\rho_{\rm c} = \frac{K_0^3}{4\pi B_n^3 G^3} \, \frac{T_{\rm c}^3}{M^2}$$

 $\Rightarrow \log \rho_{\rm c} = 3 \log T - 2 \log M + {\rm const.}$

• for non-rel. degenerate gas $P_{\rm c}=K_1
ho_{
m c}^{5/3}$ we obtain

$$\rho_{\rm c} = 4\pi \left(\frac{B_{1.5}G}{K_1}\right)^3 M^2$$

 \Rightarrow parallel lines at log $\rho_c = 2 \log M + \text{const.}$

Find a relation for relativistic degenerate gas.

- Work and discuss in groups of 2-3.
- 3 min
- Please write up your solution.
- Please sign with your names and to hand in.
- (no grades)

Quiz Solution

Find a relation for relativistic degenerate gas.

for rel. degenerate (electron) gas

$$P_{\rm c}=K_2\rho_{\rm c}^{4/3}$$

in

$$P_{\rm c} = \sqrt[3]{4\pi} B_n G M^{2/3} \rho_c^{4/3}$$

we obtain (using $M_3 = (4B_3)^{-3/2}$)

$$M = \frac{1}{\sqrt{4\pi}} \left(\frac{K_2}{GB_3}\right)^{3/2} = 4\pi M_3 \left(\frac{K_2}{\pi G}\right)^{3/2}$$

...the Chandrasekar Mass!

Domains of Stellar Mass

Regimes of stellar mass in the temperaturedensity diagram

Evolution Tracks

Evolution of Stars in the temperaturedensity diagram

Overview

- Recap
 - Thin Shell Instabilility
 - Cases of Dynamical (In)Stability
 - Dynamical Stability
- Stellar Evolution
 - Regimes of the Temperature-Density Plane
 - Regimes of Nuclear Burning
 - Regimes of Stellar Evolution
- Next Class
 - Computer Lab

Computer Lab

- Class tomorrow, 10:10-11:00, Walter Library, room 575
 Meet at reception on 5th floor on time
 (class room is in secured area)
- try to familiarize yourself with IDL (use physics computers)
- have a look at WIKI on web bage use this to report your experince, post questions.
- Unix introduction
 http://static.msi.umn.edu/tutorial/hardwareprogramming/intro.to.unix.06.07.06.pdf
- emacs introduction
 http://www.gnu.org/software/emacs/manual/emacs.html
- FORTRAN introduction http://www.cs.mtu.edu/ shene/COURSES/cs201/NOTES/intro.html

