Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Regimes of Stellar Evolution

Overview

• Regimes of Stellar Evolution

2 Stellar Evolution

• Regimes of Stellar Evolution

- Theory of the Main Sequence
 Recap: Observational Behavior
 - Scaling Laws

< ∃ →

Regimes of Stellar Evolution

Regimes of Stellar Evolution

Recall

$$P_{\rm c} = \sqrt[3]{4\pi} B_n G M^{2/3} \rho_c^{4/3}$$

• for ideal gas, $P_{\rm c} = K_0 \rho_{\rm c} T_{\rm c}$ and we obtain

$$\rho_{\rm c} = \frac{K_0^3}{4\pi B_n^3 G^3} \, \frac{T_{\rm c}^3}{M^2}$$

⇒ parallel lines with log $\rho_c = 3 \log T - 2 \log M + \text{const.}$ • for non-rel. degenerate gas $P_c = K_1 \rho_c^{5/3}$ we obtain

$$\rho_{\rm c} = 4\pi \left(\frac{B_{1.5}G}{K_1}\right)^3 M^2$$

 \Rightarrow parallel lines at log $\rho_{c} = 2 \log M + \text{const.}$

B b d B b

Quiz Solution

Find a relation for relativistic degenerate gas.

for rel. degenerate (electron) gas

$$P_{\rm c} = K_2 \rho_{\rm c}^{4/3}$$

in

$$P_{\rm c} = \sqrt[3]{4\pi} B_n G M^{2/3} \rho_c^{4/3}$$

we obtain (using $M_3 = (4B_3)^{-3/2}$)

$$M = \frac{1}{\sqrt{4\pi}} \left(\frac{K_2}{GB_3}\right)^{3/2} = 4\pi M_3 \left(\frac{K_2}{\pi G}\right)^{3/2}$$

...the Chandrasekar Mass!

Regimes of Stellar Evolution

Domains of Stellar Mass

Regimes of stellar mass in the temperaturedensity diagram

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Regimes of Stellar Evolution

Evolution Tracks

Evolution of Stars in the temperaturedensity diagram

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Regimes of Stellar Evolution

Overview

• Regimes of Stellar Evolution

Stellar EvolutionRegimes of Stellar Evolution

Theory of the Main Sequence
 Recap: Observational Behavior
 Scaling Laws

3 N

Regimes of Stellar Evolution

Burning Phases in Stars

$20{ m M}_{\odot}$ star					
Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
н	He	¹⁴ N	0.02	10 ⁷	$4 \text{ H} \xrightarrow{\text{CNO}} {}^{4}\text{He}$
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → ¹² C ¹² C(α,γ) ¹⁶ O
c	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	20 Ne(γ, α) 16 O 20 Ne(α, γ) 24 Mg
O	, Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si, Š	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Regimes of Stellar Evolution

Evolution of Stars, 15 M_{\odot} and 25 M_{\odot}

Evolution of central temperature and density for initial stellar masses of $15 \, M_{\odot}$ and $25 \, \text{M}_{\odot}$ in the densitytemperature diagram

(note reversal of ${\cal T}$ and ho)

Regimes of Stellar Evolution

Burning Phases in the Stellar Interior

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Regimes of Stellar Evolution

Evolution of Stars, $1-15 \, M_{\odot}$

Evolution of central temperature and density for initial stellar masses of $1 M_{\odot}$ to $15 M_{\odot}$ in the temperature-density diagram.

Regimes of Stellar Evolution

Configuration of a $10 M_{\odot}$ Star

 $\begin{array}{l} \mbox{Configuration of} \\ \mbox{a 10} \ \mbox{M}_{\odot} \ \mbox{star at} \\ \mbox{different} \\ \mbox{evolution phases} \\ \mbox{in the} \\ \mbox{temperature-} \\ \mbox{density} \\ \mbox{diagram.} \end{array}$

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Recap: Observational Behavior Scaling Laws

Overview

1 Reca

• Regimes of Stellar Evolution

2 Stellar Evolution• Regimes of Stellar Evolution

- 3 Theory of the Main Sequence
 - Recap: Observational Behavior
 - Scaling Laws

< ∃ →

Recap: Observational Behavior Scaling Laws

Evolution of the Sun in the HRD

Evolution of the sun from formation through hydrogen burning

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Lecture 29: Evolution of Stars - Theory of the Main Sequence

Image: Image:

Recap: Observational Behavior Scaling Laws

Main Sequance in a Star Cluster

Recap: Observational Behavior Scaling Laws

Mass-Luminosity Relation

Mass-Luminosity relation for (zero-age) main-sequence (ZAMS) stars

 $L \propto M^{\nu}$

with $\nu = 3 \dots 5$. Can be calibrated piecewise to

$$\frac{L}{\mathrm{L}_{\odot}} = \left(\frac{M}{\mathrm{M}_{\odot}}\right)^{\nu}$$

Recap: Observational Behavior Scaling Laws

Stellar Structure Equations

stationary terms time-dependent terms $\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$ (1) $\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}$ (2) $\frac{\partial F}{\partial m} = \varepsilon_{\rm nuc} - \varepsilon_{\nu} - c_{P} \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}$ (3) $\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right]$ (4) $\frac{\partial X_i}{\partial t} = f_i(\rho, T, \mathbf{X})$ (5)

where $\mathbf{X} = \{X_1, X_2, \dots, X_i, \dots\}$.

Recap: Observational Behavior Scaling Laws

Simplified Stellar Structure Equations

- only radiative temperature gradient: $\nabla = \nabla_{rad} = \frac{3}{16\pi acG} \frac{\kappa FP}{mT^4}$
- only simple law for nuclear burning: $\varepsilon = \varepsilon_{nuc} \varepsilon_{\nu} = q_0 \rho T^n$
- only ideal gas pressure: $P = P_{gas} = \frac{\mathcal{R}T\rho}{\mu}$

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}$$

$$\frac{\partial T}{\partial m} = -\frac{3}{4ac} \frac{\kappa}{T^3} \frac{F}{(4\pi r^2)^2}$$

$$\frac{\partial F}{\partial m} = q_0 \rho T^n$$

$$P = \frac{\mathcal{R}T\rho}{\mu}$$

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Dimensionless Stellar Structure Equations

- all functions r(m), P(m), ρ(m), T(m), and F(m) need to be solved in range 0 ≤ m ≤ M
- free parameter: mass M
- parameters κ , q_0 , μ , and n determined from physics
- introduce dimension-less variable

$$x = \frac{m}{M}$$

• we can now write a set of dimension-less equations with functions $f_i(x)$ for these 5 quantities:

$$r = f_1(x)R_* P = f_2(x)P_* \rho = f_3(x)\rho_* T = f_4(x)T_* F = f_5(x)F_*$$

伺 ト イ ヨ ト イ ヨ ト

Scaling Laws

Dimensionless Stellar Structure Equations

substituting

Stars and St

$$m = Mx,$$

$$r = f_1(x)R_*,$$

$$P = f_2(x)P_* \text{ into}$$

		$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}$
	we obtain	$P_* df_2 \qquad GMx$
		$\frac{1}{M}\frac{1}{\mathrm{d}x} = -\frac{1}{4\pi f_1^4 R_*^4}$
٩	If we define	$P_* = \frac{GM^2}{24}$
	we may write	R_*^4
		$\frac{\mathrm{d}r_2}{\mathrm{d}x} = -\frac{x}{4\pi f_1^4}$
nd	Stellar Evolution - Fall 2008	Alexander Heger Lecture 29: Evolution of Stars - Theory of the Main Sequence

Try this for the other four equations

- Work and discuss in groups of 2-3.
- 3 min
- Please write up your solution.
- Please sign with your names and to hand in.
- (no grades)

A 10

A B > A B >

Recap: Observational Behavior Scaling Laws

Quiz - equations

Try this for the other four equations

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}$$

$$\frac{\partial T}{\partial m} = -\frac{3}{4ac} \frac{\kappa}{T^3} \frac{F}{(4\pi r^2)^2}$$

$$\frac{\partial F}{\partial m} = q_0 \rho T^n$$

$$P = \frac{\mathcal{R}T\rho}{\mu}$$

$$r = f_{1}(x)R_{*}$$

$$P = f_{2}(x)P_{*}$$

$$\rho = f_{3}(x)\rho_{*}$$

$$T = f_{4}(x)T_{*}$$

$$F = f_{5}(x)F_{*}$$

< 日 > < 同 > < 三 > < 三 >

э

Dimensionless Stellar Structure Equations

In a similar way we can re-write the entire set

$$\begin{aligned} \frac{df_2}{dx} &= -\frac{x}{4\pi f_1^4} \quad , \quad P_* = \frac{GM^2}{R_*^4} \\ \frac{df_1}{dx} &= \frac{1}{4\pi f_1^2 f_3} \quad , \quad \rho_* = \frac{M}{R_*^3} \\ f_2 &= f_3 f_4 \quad , \quad T_* = \frac{\mu P_*}{\mathcal{R}\rho_*} \\ \frac{df_4}{dx} &= -\frac{3f_5}{4f_4^3 (4\pi f_1^2)^2} \quad , \quad F_* = \frac{ac}{\kappa} \frac{T_*^4 R_*^4}{M} \\ \frac{df_5}{dx} &= f_3 f_4^n \quad , \quad F_* = q_0 \rho_* T_*^n M \end{aligned}$$

 \Rightarrow homology of solution as function of M!

Recap: Observational Behavior Scaling Laws

Dimensionless Stellar Structure Equations

• substituting
$$P_* = \frac{GM^2}{R_*^4}$$
 and $\rho_* = \frac{M}{R_*^3}$ into $T_* = \frac{\mu P_*}{R\rho_*}$ we obtain:

$$T_* = \frac{\mu G}{R} \frac{M}{R_*}$$

• adding this into
$$F_* = rac{ac}{\kappa} rac{T^*_* R^4_*}{M}$$
 we obtain

$$F_* = \frac{ac}{\kappa} \left(\frac{\mu G}{\mathcal{R}}\right)^4 M^3$$

- we recover $L \propto M^3$
- $\tau_{\rm MS} = \frac{M}{L} \propto M^{-2}$
- but this relation also holds for any value of x inside star at same relative mass coordinate

Recap: Observational Behavior Scaling Laws

Dimensionless Stellar Structure Equations

• substituting
$$F_* = \frac{ac}{\kappa} \left(\frac{\mu G}{\mathcal{R}}\right)^4 M^3$$
 into $F_* = q_0 \rho_* T_*^n M$
and using $P_* = \frac{GM^2}{R_*^4}$, $\rho_* = \frac{M}{R_*^3}$, and $T_* = \frac{\mu P_*}{\mathcal{R}\rho_*}$ we obtain:
 $R_* \propto M^{\frac{n-1}{n+3}}$

- \Rightarrow for large *n* (CNO cycle: $n \approx 14...16$): roughly $R_* \propto M$ (big stars)
- \Rightarrow for small *n* (pp chains: *n* = 4): $R \propto M^{3/7}$

- 4 E b 4 E b

Recap: Observational Behavior Scaling Laws

Dimensionless Stellar Structure Equations

• inserting
$$R_* \propto M^{rac{n-1}{n+3}}$$
 into $ho_* = rac{M}{R_*^3}$ we obtain

$$ho_* \propto M^{2rac{3-n}{3+n}}$$

• since *n* > 3:

density decreases with mass!

• in particular, this is true for central density.

(E)

Recap: Observational Behavior Scaling Laws

Dimensionless Stellar Structure Equations

Using

$$L = 4\pi R^2 \sigma T_{\rm eff}^4$$

we obtain

$$L^{1-rac{2(n-1)}{3(n+3)}} \propto T_{
m eff}^4$$

$$\log L = 5.6 \log T_{\rm eff} + {\rm const.}$$

• for n = 16 we obtain

$$\log L = 8.4 \log T_{\rm eff} + {\rm const.}$$

→ 3 → 4 3

Recap: Observational Behavior Scaling Laws

Dimensionless Stellar Structure Equations

• from
$$T_* = \frac{\mu G}{\mathcal{R}} \frac{M}{R_*}$$
 and $R_* \propto M^{\frac{n-1}{n+3}}$ we obtain for the (central) temperature

$$T_{\rm c} \propto M^{rac{4}{n+3}}$$

• for n = 4 (pp chain, low-mass stars) we hence have

 $T_{\rm c} \propto M^{4/7}$

• for n = 16 (CNO cycle, massive stars) we hence have

$$T_{
m c} \propto M^{1/5}$$

 ⇒ due to high temperature-sensitivity of CNO cycle nuclear burning, massive stars require only little higher central temperature to compensate for their hight luminosity.

Dimensionless Stellar Structure Equations

• calibration to the sun, $\, T_{c,\odot} \approx 1.5 {\times} 10^7 \, \text{K}$

$$\frac{T_{\rm c}}{T_{\rm c,\odot}} = \left(\frac{M}{\rm M_\odot}\right)^{4/7}$$

• assuming minimum temperature $T_{\rm min}$ for hydrogen ignition, $T_{\rm min} \approx 4 \times 10^6$ K, and requiring $T_{\rm c} > T_{\rm min}$ we obtain

$$\frac{M}{M_{\odot}} \ge \left(\frac{T_{\min}}{T_{\mathsf{c},\odot}}\right)^{7/4}$$

- ullet \Rightarrow minimum stellar mass $M_{
 m min} pprox 0.1\,
 m M_{\odot}$
- \Rightarrow minimum stellar luminosity:

$$\frac{L_{min}}{L_{\odot}} = \left(\frac{M_{min}}{M_{\odot}}\right)^3 \approx 10^{-3}$$