Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

< ∃ >

Overview

- Regimes of Stellar Evolution
- Theory of the Main Sequence

Regimes of Stellar Evolution Theory of the Main Sequence

Configuration of a $10\,M_\odot$ Star

Configuration of a 10 M_{\odot} star at different evolution phases in the temperaturedensity diagram.

Regimes of Stellar Evolution Theory of the Main Sequence

Stellar Structure Equations

stationary terms

time-dependent terms

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$
(1)
$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}$$
(2)
$$\frac{\partial F}{\partial m} = \varepsilon_{\text{nuc}} - \varepsilon_{\nu} - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}$$
(3)
$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \left[1 + \frac{r^2}{Gm} \frac{\partial^2 r}{\partial t^2} \right]$$
(4)

$$\frac{\partial X_i}{\partial t} = f_i(\rho, T, \mathbf{X}) \tag{5}$$

where $\mathbf{X} = \{X_1, X_2, \dots, X_i, \dots\}$.

э

Regimes of Stellar Evolution Theory of the Main Sequence

Simplified Stellar Structure Equations

- only radiative temperature gradient: $\nabla = \nabla_{rad} = \frac{3}{16\pi acG} \frac{\kappa FP}{mT^4}$
- only simple law for nuclear burning: $\varepsilon = \varepsilon_{nuc} \varepsilon_{\nu} = q_0 \rho T^n$
- only ideal gas pressure: $P = P_{gas} = \frac{\mathcal{R}T\rho}{\mu}$

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}$$

$$\frac{\partial T}{\partial m} = -\frac{3}{4ac} \frac{\kappa}{T^3} \frac{F}{(4\pi r^2)^2}$$

$$\frac{\partial F}{\partial m} = q_0 \rho T^n$$

$$P = \frac{\mathcal{R}T\rho}{\mu}$$

- 同 ト - ヨ ト - - ヨ ト

Dimensionless Stellar Structure Equations

- all functions r(m), P(m), $\rho(m)$, T(m), and F(m) need to be solved in range $0 \le m \le M$
- free parameter: mass M
- parameters κ , q_0 , μ , and n determined from physics
- introduce dimension-less variable x with $0 \le x \le 1$:

$$x = \frac{m}{M}$$

• we can now write a set of dimension-less equations with functions $f_i(x)$ for these 5 quantities:

$$r = f_1(x)R_* P = f_2(x)P_* \rho = f_3(x)\rho_* T = f_4(x)T_* F = f_5(x)F_*$$

Regimes of Stellar Evolution Theory of the Main Sequence

Dimensionless Stellar Structure Equations

substituting

$$m = Mx,$$

 $r = f_1(x)R_*,$
 $P = f_2(x)P_*$ into

we	obtain

$P_* d f_2$	GMx
$\overline{M} \overline{dx}$	$-\frac{1}{4\pi f_1^4 R_*^4}$

 $\frac{\partial P}{\partial m}$

 $-\frac{Gm}{4\pi r^4}$

• If we define

$$P_* = \frac{GM^2}{R_*^4}$$

we may write

$$\frac{\mathrm{d}f_2}{\mathrm{d}x} = -\frac{x}{4\pi f_1^4}$$

→ Ξ →

э

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 30: Evolution on the Main Sequence

< ≣ > _

Dimensionless Stellar Structure Equations

In a similar way we can re-write the entire set

$$\begin{aligned} \frac{df_2}{dx} &= -\frac{x}{4\pi f_1^4} \quad , \quad P_* = \frac{GM^2}{R_*^4} \\ \frac{df_1}{dx} &= \frac{1}{4\pi f_1^2 f_3} \quad , \quad \rho_* = \frac{M}{R_*^3} \\ f_2 &= f_3 f_4 \quad , \quad T_* = \frac{\mu P_*}{\mathcal{R} \rho_*} \\ \frac{df_4}{dx} &= -\frac{3f_5}{4f_4^3 (4\pi f_1^2)^2} \quad , \quad F_* = \frac{ac}{\kappa} \frac{T_*^4 R_*^4}{M} \\ \frac{df_5}{dx} &= f_3 f_4^n \quad , \quad F_* = q_0 \rho_* T_*^n M \end{aligned}$$

 \Rightarrow homology of solution as function of M (and q₀, n, μ , and κ)

Regimes of Stellar Evolution Theory of the Main Sequence

Dimensionless Stellar Structure Equations

• substituting
$$P_* = \frac{GM^2}{R_*^4}$$
 and $\rho_* = \frac{M}{R_*^3}$ into $T_* = \frac{\mu P_*}{R\rho_*}$ we obtain:

$$T_* = \frac{\mu G}{R} \frac{M}{R_*}$$

• adding this into
$${\sf F}_*=rac{ac}{\kappa}rac{T^*_*R^4_*}{M}$$
 we obtain

$$F_* = rac{ac}{\kappa} \left(rac{\mu G}{\mathcal{R}}
ight)^4 M^3$$

- we recover $L \propto M^3$
- $\tau_{\rm MS} = \frac{M}{L} \propto M^{-2}$
- but this relation also holds for any value of x inside star at same relative mass coordinate

Recap Regin Main Sequence Evolution Theo

A 3 3 4 4

Dimensionless Stellar Structure Equations

• substituting
$$F_* = \frac{ac}{\kappa} \left(\frac{\mu G}{\mathcal{R}}\right)^4 M^3$$
 into $F_* = q_0 \rho_* T_*^n M$
and using $P_* = \frac{GM^2}{R_*^4}$, $\rho_* = \frac{M}{R_*^3}$, and $T_* = \frac{\mu P_*}{\mathcal{R}\rho_*}$ we obtain:
 $R_* \propto M^{\frac{n-1}{n+3}}$

- \Rightarrow for large *n* (CNO cycle: $n \approx 14...16$): roughly $R_* \propto M$ (big stars)
- \Rightarrow for small *n* (pp chains: *n* = 4): $R \propto M^{3/7}$

I ≡ ▶ < </p>

Dimensionless Stellar Structure Equations

$$ullet$$
 inserting $R_* \propto M^{rac{n-1}{n+3}}$ into $ho_* = rac{M}{R_*^3}$ we obtain

$$ho_* \propto M^{2rac{3-n}{3+n}}$$

- since n > 3: density decreases with mass!
- in particular, this is true for central density.

Regimes of Stellar Evolution Theory of the Main Sequence

Dimensionless Stellar Structure Equations

Using

$$L = 4\pi R^2 \sigma T_{\rm eff}^4$$

we obtain

$$L^{1-rac{2(n-1)}{3(n+3)}}\propto T_{
m eff}^4$$

• for n = 4 we obtain

$$\log L = 5.6 \log T_{\rm eff} + {\rm const.}$$

• for n = 16 we obtain

$$\log L = 8.4 \log T_{\rm eff} + {\rm const.}$$

同 ト イ ヨ ト イ ヨ ト

э

Dimensionless Stellar Structure Equations

• from $T_* = \frac{\mu G}{\mathcal{R}} \frac{M}{R_*}$ and $R_* \propto M^{\frac{n-1}{n+3}}$ we obtain for the (central) temperature

$$T_{\rm c} \propto M^{rac{4}{n+3}}$$

• for n = 4 (pp chain, low-mass stars) we hence have

 $T_{\rm c} \propto M^{4/7}$

• for n = 16 (CNO cycle, massive stars) we hence have

 $T_{\rm c} \propto M^{1/5}$

 → due to high temperature-sensitivity of CNO cycle nuclear burning, massive stars require only little higher central temperature to compensate for their hight luminosity.

Dimensionless Stellar Structure Equations

• calibration to the sun, $\, T_{\rm c,\odot} \approx 1.5 {\times} 10^7 \, {\rm K}$

$$\frac{T_{\rm c}}{T_{\rm c,\odot}} = \left(\frac{M}{{\rm M}_\odot}\right)^{4/7}$$

• assuming minimum temperature $T_{\rm min}$ for hydrogen ignition, $T_{\rm min} \approx 4 \times 10^6 \, \text{K}$, and requiring $T_{\rm c} > T_{\rm min}$ we obtain

$$\frac{M}{\mathsf{M}_{\odot}} \geq \left(\frac{T_{\mathsf{min}}}{T_{\mathsf{c},\odot}}\right)^{7/4}$$

- ullet \Rightarrow minimum stellar mass $M_{
 m min} pprox 0.1\,
 m M_{\odot}$
- \Rightarrow minimum stellar luminosity:

$$\frac{L_{min}}{L_{\odot}} = \left(\frac{M_{min}}{M_{\odot}}\right)^3 \approx 10^{-3}$$

伺 ト イ ヨ ト イ ヨ ト

Regimes of Stellar Evolution Theory of the Main Sequence

Mass-Luminosity Relation for ZAMS Stars

 We derived scaling law for the Main Sequence (MS) that scales as

 $L \propto M^3$

- What causes deviation for low and high masses?
- Discuss with you neigbor and write down your solution.
- Please write your names on sheet and hand in (no grades).

Overview

1 Reca

- Regimes of Stellar Evolution
- Theory of the Main Sequence

2 Main Sequence Evolution• Concluding Remarks

Concluding Remarks

Mass-Luminosity Relation for ZAMS Stars

 $L\propto M^{\nu}$

Notes:

- $\nu \sim 3$ for stars dominated by ideal gas pressure
- for massive stars, $M\gtrsim 100\,{
 m M}_\odot$: $u\approx 1$ due to radiation pressure
- for low-mass stars: $\nu \approx 5$ due to (electron) gas degeneracy
- star is not purely radiative but also partly convective!

Concluding Remarks

The Main-Sequence Phase

- when the star reaches the ZAMS the previous evolution is "forgotten"
- the structure of the star is uniquely defined by its mass and composition
- ...and rotation, magnetic fields

Concluding Remarks

The Structure of Zero-Age Main-Sequence Stars

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

The Main-Sequence Evolution of Stars

- nuclear burning proceeds in the interior of stars until hydrogen fuel is exhausted
- The center of the star contracts and heats up to compensate for reduction of fuel
- the outer layers of the star expand
- the lifetime is very strong function of the mass of the star
- convective regions evolve chemically homogeneously
- in some stars the products or results of nuclear burning in the can be found at the surface
 - (Li depletion of the sun, N enrichment of massive stars)
- massive stars may lose significant amounts of mass due to stellar "winds"
- stars may also change their rotation rate spin up or down.

Concluding Remarks

The MS Phase in the HRD - Clusters

- stars evolve "off" the ZAMS as their evolution proceeds
- generally evolved stars are found to the right of the ZAMS
- isochrones define stars of equal age but different mass
- other factors can be composition (untypical), rotation, and binarity

Concluding Remarks

The MS Phase in the HRD - Clusters

Stars and Stellar Evolution - Fall 2008 - Alexander Heger

Concluding Remarks

The MS Phase in the HRD - Clusters

- different clusters in the galaxy
- luminosity as a function of color
- turn-off determines cluster age

Main-Sequence lifetimes

$Mass(M_{\odot})$	Time (vr)	α
	10000 ()1)	
0.1	6×10^{12}	-2.8
0.5	$7 imes 10^{10}$	-2.8
1.0	1×10^{10}	
1.25	4×10^9	-4.1
1.5	2×10^9	-4.0
3.0	2×10^{8}	-3.6
5.0	7×10^{7}	-3.1
9.0	2×10^{7}	-2.8
15	1×10^{7}	-2.6
25	6×10^{6}	-2.3

Table 8.2 Main-sequence lifetimes

 logarithmic change of lifetime with (initial) mass

$$\alpha = \frac{\log \left(\tau_{\rm MS} / \tau_{\rm MS,\odot}\right)}{\log \left(M / {\rm M}_\odot\right)}$$

- note large range in stellar lifetimes!
- maybe better use slope of lifetimes, $\tau_{\rm MS} \propto M^{lpha'}$:

$$\alpha' = \frac{\mathrm{d}\,\ln\tau_{\mathrm{MS}}}{\mathrm{d}\,\ln M}$$

Main-Sequence lifetimes

NOTE

- stars with masses below $0.7 M_{\odot}$ have not yet evolved off the MS even if as old as the universe! These are red dwarf stars. All ever formed are still around.
- stars with initial masses $M \lesssim 2 \,\mathrm{M}_{\odot}$ ignite helium burning under degenerate conditions in their core. They are usually referred to as low-mass stars.
- stars with initial mass $2M_{\odot} \lesssim 9M_{\odot}$ are called intermediate mass stars. They ignite helium burning non-degenerate. We can distinguish stars that later ignite carbon burning in the center ($M \gtrsim 7.5 \, M_{\odot}$) and those that don't.
- Stars with masses $M\gtrsim9\,{\rm M}_\odot$ form iron codes that collapse to make core collapse supernovae

< 同 > < 国 > < 国 >

Main-Sequence lifetimes

NOTE (continued)

- very massive stars with $M\gtrsim 100~{\rm M}_\odot$ may even die in different ways, as pair instability supernovae
- super-massive stars (if ever formed), $M \gtrsim 100,000 \,\mathrm{M_{\odot}}$ may never reach the main sequence and collapse or explode due to general relativistic effects (adiabatic index needed for stability becomes greater then 4/3)
- the initial-mass limits for low-mass stars, intermediatre-mass stars, and supernovae depend on composition of the stars. For example, for star of 10^{-4} solar metallicity, the lower mass limit for supernovae is lower by $\sim 1.5\,M_\odot$
- There are significant uncertainties in the quoted mass limits depending on stellar models due to our limited understanding of mixing processes inside stars, up to $\sim 1\,M_\odot$: the lower mass limit for supernovae is somewhere between $8\,M_\odot$ and $10\,M_\odot$ at solar metallicity

Concluding Remarks

Main Sequance in a Star Cluster

Hyades cluster and stellar tracks

$$\log L = \alpha \log T_{\rm eff} + {\rm const.}$$