Astrophysics I: Stars and Stellar Evolution AST 4001

Yong-Zhong Qian¹

¹School of Physics and Astronomy University of Minnesota

Stars and Stellar Evolution, Fall 2008

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 36: White Dwarfs

Overview

Planetary Nebula Formation

- White Dwarf Star Formation
- White Dwarf Star Structure
- White Dwarf Star Evolution

Change of Structure During AGB Cycle

Planetary Nebula (PN) Formation

- eventually all extended AGB red giant envelope is lost by stellar winds
- star gets very hot (30,000 K)
- blows a fast hot superwind that evacuates bubble around it
- formation of "ring"-shaped "planetary" nebula
- \bullet eventually burning in shell stops when mass of shell drops below $10^{-3}\,\ldots 10^{-4}\,M_\odot$
- lower mass stars make lower mass WDs
- more lower mass stars, therefore more lower-mass remnants

Planetary Nebula Formation

Planetary Nebula Ring

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 36: White Dwarfs

Evolution of Intermediate and Low-Mass Stars in the HRD

- evolution of low-mass $(1\,M_\odot)$ and intermediate-mass $(5\,M_\odot)$ star in the HRD
- low-mass star ascends Hayashi line, then "jumps" to zero-age horizontal branch (ZAHB) at He ignition, becomes AGB.
- in this example, a late He flash after most envelope lost brings stars back to red before it descends to WD branch

White Dwarf Star Formation White Dwarf Star Structure White Dwarf Star Evolution

Overview

1 Reca

• Planetary Nebula Formation

2 White Dwarf Stars

- White Dwarf Star Formation
- White Dwarf Star Structure
- White Dwarf Star Evolution

White Dwarfs from AGB - Surface Composition

- during Asymptotic Giant Branch (AGB) cycle of double-shell hydrogen/helium burning
- eventually all envelope lost due to stellar winds
- \bullet star descends from AGB, superwind \Rightarrow Planetary Nebula + White Dwarf
- depending on where in AGB cycle envelope is lost H shell of He shell burning - we find H or He surface layers
- since He shell phase is much shorter, the star is less likely in that phase
- *observationally* we find that about 25 % of WDs have He envelope, 75 % have H envelope
- ONeMg white dwarfs from the high-mass end of intermediate mass stars, CO white dwarfs for lower masses

Helium White Dwarfs

- Stars of $\sim 0.7\,M_\odot-1\,M_\odot$ lose entire envelope in the Red Giant Phase before igniting central helium burning
- ullet \Rightarrow no AGB phase, no PN phase
- ullet \Rightarrow Helium white dwarf stars
- $\bullet\,$ typical white dwarf star masses: $\sim 0.2-0.4\,M_{\odot}$
- Note:

recall that stars with initial mass below 0.7 M_\odot live longer than that current age of the universe \Rightarrow no white dwarfs from such stars

White Dwarf Star Masses

Stars with initial masses $\sim 7.5-9\,M_\odot$

- \bullet exceed CO core mass of $\sim 1.1\,M_{\odot}$
- ignite central carbon burning \Rightarrow make ONeMg core
- do not ignite later burning stages
- lose envelope as AGB stars (+PN)
- \Rightarrow ONeMg WDs with $M > 1.1 \, {
 m M}_{\odot}$
- but due to IMF: few stars with 7.5 $M_{\odot} < M < 9\,M_{\odot}$

White Dwarf Star Masses

- stars with initial mass $2 M_{\odot} \lesssim M \lesssim 7.5 M_{\odot}$:
 - non-degenerate ignition of central He burning \Rightarrow CO core
 - no ignition of carbon burning \Rightarrow CO WD
 - make range of WD with mass below $\sim 1.1\,\text{M}_\odot$
 - IMF \Rightarrow more stars
- stars with initial mass $1\,M_\odot \lesssim {\it M} \lesssim 2\,M_\odot$:
 - formation degenerate He core, ignites when grown to $\sim 0.6\,M_\odot$
 - \Rightarrow CO Core
 - no ignition of carbon burning \Rightarrow CO WD of about that mass
 - $\bullet \ \mathsf{IMF} \Rightarrow \mathsf{many \ stars}$

White Dwarf Star Masses

- stars with initial mass 0.7 $M_\odot \lesssim {\it M} \lesssim 1\,M_\odot$
 - do not ignite carbon burning
 - $\bullet \ \Rightarrow \mathsf{He} \ \mathsf{WD}$
 - typical masses: $\sim 0.2-0.4\,M_\odot$
 - $\bullet \ \mathsf{IMF} \Rightarrow \mathsf{many \ stars}$
- in binary star system
 - stellar core may be uncovered due to loss of envelope by interaction with companion star
 - $\bullet \ \Rightarrow$ typically occurs when star expands
 - $\bullet \ \Rightarrow$ at beginning RG or AGB phases
 - $\bullet\,\Rightarrow$ different mass distribution, typically lower masses

White Dwarf Star Structure

Mass-Radius Relation for Degenerate Stars

White Dwarf Star Formation White Dwarf Star Structure White Dwarf Star Evolution

White Dwarf Structure

Structure of a WD (sketch)

- degenerate core with constant
 - temperature, T_{c} ,
 - radius $r_{\rm b}$, and mass $r_{\rm b}$
- non-degenerate envelope with constant luminosity
- white dwarf radius R

Image: A image: A

White Dwarf Structure

approximate picture:

- \bullet degenerate electron gas is good heat conductor \Rightarrow
- assume core of mass $\mathit{r_b}\approx \mathit{M},$ of constant $\mathit{T}\approx \mathit{T_c},$ and radius $\mathit{r_b}$
- envelope has small mass, no energy generation, ideal gas \Rightarrow constant luminosity F = L
- for the envelope the structure equations reduce do

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\rho \frac{GM}{r^2}, \quad \frac{\mathrm{d}T}{\mathrm{d}r} = -\frac{3}{4ac} \frac{\kappa \rho}{T^3} \frac{L}{4\pi r^2}$$

• assume power-law Kramers opacity for envelope

$$\kappa = \kappa_0 \rho T^{-7/2} = \kappa_0 \frac{\mu}{\mathcal{R}} P T^{-9/2}$$

White Dwarf Structure

• combining the three equations we obtain

$$P \,\mathrm{d}P = \frac{16\pi a c \mathcal{R}G}{3\kappa_0 \mu} \frac{M}{L} T^{15/2} \,\mathrm{d}T$$

• integrating inward from the surface where P = 0 = T we obtain

$$P(T) = \left(\frac{64\pi a c \mathcal{R} G}{51\kappa_0 \mu}\right)^{1/2} \left(\frac{M}{L}\right)^{1/2} T^{17/4}$$

• Using the ideal gas equation we may rewrite this in the form

$$\rho(T) = \left(\frac{64\pi a c \mu G}{51\kappa_0 \mathcal{R}}\right)^{1/2} \left(\frac{M}{L}\right)^{1/2} T^{13/4}$$

・ 同 ト ・ 三 ト ・

White Dwarf Structure

 let us define the transition from non-degenerate envelope to degenerate core as the location where ideal and (completely) degenerate electron gas pressure become equal to define location r_b:

$$\left[\mathcal{R}\frac{\rho}{\mu_{\rm e}}T\right]_{\rm b} = \left[K_1'\left(\frac{\rho}{\mu_{\rm e}}\right)^{5/3}\right]_{\rm b}, \quad \rho(r_{\rm b}) = \mu_{\rm e}\left(\frac{\mathcal{R}T(r_{\rm b})}{K_1'}\right)^{3/2}$$

- at this location the envelope temperature must fit the core temperature, T_c , and the density should be continuous
- combining with the previous equation we obtain

$$\frac{L}{M} = C_{\rm WD} \ T_{\rm c}^{7/2} \,, \quad C_{\rm WD} = \frac{64\pi a c G K_1'^3 \mu}{51 \mathcal{R}^4 \kappa_0 {\mu_{\rm e}}^2}$$

White Dwarf Star Formation White Dwarf Star Structure White Dwarf Star Evolution

White Dwarf Structure

• for typical composition we obtain for luminosity

$$L \approx 6.8 \times 10^{-3} \left(\frac{T_{\rm c}}{10^7 \, \rm K}\right)^{7/2} \left(\frac{M}{\rm M_{\odot}}\right) L_{\odot}$$

• and for central temperature

$$T_{\rm c} \approx 4 \times 10^7 \left(\frac{L}{M} \frac{{\rm M}_\odot}{{\rm L}_\odot} \right)^{2/7} {\rm K}$$

- Is the white dwarf in hydrostatic equilibrium?
- Is the white dwarf in thermal equilibrium?
- Is the white dwarf in nuclear equilibrium?
- The white dwarf shines. What is the energy source?
- Try to find the answers yourself (2 min).
- Discuss with your neighbor(s) and write down your concordance solution. (2 min)
- Open discussion. (2 min)

White Dwarf Star Formation White Dwarf Star Structure White Dwarf Star Evolution

White Dwarf Cooling

• Luminosity of white dwarf from internal energy of the ions (ideal gas)

$$U_{\mathrm{I}}=rac{3}{2}rac{\mathcal{R}}{\mu_{\mathrm{I}}}MT_{\mathrm{c}}$$

 $\bullet \Rightarrow {\sf luminosity \ equals \ loss \ in \ internal \ energy}$

$$L = -\frac{\mathrm{d}U_{\mathrm{I}}}{\mathrm{d}t} = -\frac{3}{2}\frac{\mathcal{R}}{\mu_{\mathrm{I}}}M\frac{\mathrm{d}T_{\mathrm{c}}}{\mathrm{d}t}$$

• using $L \propto T_{\rm c}^{7/2}$ (recall $L = M \, C_{\rm WD} \, T_{\rm c}^{7/2}$) we can write

$$L = -\frac{3}{7}\frac{\mathcal{R}}{\mu_{\rm I}}M\frac{T_{\rm c}}{L}\frac{{\rm d}L}{{\rm d}t}, \quad \frac{{\rm d}L}{{\rm d}t} = -\frac{7}{3}\frac{\mu_{\rm I}}{\mathcal{R}}\frac{L^2}{T_{\rm c}M}$$

• using $L = M C_{WD} T_c^{7/2}$ again, we eliminate L and obtain

$$\frac{\mathrm{d}L}{\mathrm{d}t} = -\frac{7}{3}\frac{\mu_{\mathrm{I}}}{\mathcal{R}}MC_{\mathrm{WD}}^{2}T_{\mathrm{c}}^{6}$$

White Dwarf Star Formation White Dwarf Star Structure White Dwarf Star Evolution

White Dwarf Cooling Time

• define cooling time as time scale of luminosity drop (by e):

$$\tau_{\rm cool} = -\frac{{\rm d}t}{{\rm d}\ln L} = -L \left(\frac{{\rm d}L}{{\rm d}t}\right)^{-1} = \frac{3}{7} \frac{\mathcal{R}}{\mu_{\rm I}} \frac{M}{L} T_{\rm c}$$

• eliminating T_c using $L/M = C_{WD} T_c^{7/2}$ we obtain

$$\tau_{\rm cool} = \frac{3}{7} \frac{\mathcal{R}}{\mu_{\rm I} C_{\rm WD}^{2/7}} \left(\frac{M}{L}\right)^{5/7} \approx 2.5 \times 10^6 \left(\frac{M}{\rm M_{\odot}}\right)^{5/7} \left(\frac{L}{\rm L_{\odot}}\right)^{-5/7} \rm yr$$

• e.g., cooling time scale for $1\,M_\odot$ WD at (to) $10^{-1}\,L_\odot\colon\sim 10^7\,\text{yr}$ $10^{-4}\,L_\odot\colon\sim 2{\times}10^9\,\text{yr}$

White Dwarf Cooling Time

NOTES:

- white dwarf quickly "out-shined" by surrounding planetary nebula ($L=10^4\,L_\odot)$
- $\bullet\,$ when $L\sim 10^{-4}$ is reached, $\,T_{\rm c}$ bcomes low enough for crystallization to set in
 - first rise in heat capacity from $3/2k_{\rm B}/{\rm ion}$ to $3k_{\rm B}/{\rm ion}$
 - then, however, heat capacity drops quickly $\propto T^3$ (below Debye Temperature)
 - $\bullet \ \Rightarrow {\sf fast drop in WD luminosity}$
 - \Rightarrow fewer WDs in given *L* bin
- radius of WD essentially constant
 - \Rightarrow WDs of given mass follow track of constant radius

$$\log L = 4 \log T_{\rm eff} + 2 \log R + \log (4\pi\sigma)$$

White Dwarf Star Formation White Dwarf Star Structure White Dwarf Star Evolution

White Dwarf Luminosity Function

• considering the white dwarf cooling function

 $au_{
m cool} \propto L^{-5/7}$

➤ number of stars within given luminosity bin

$$\Phi \propto L^{-5/7}$$

• drop-off below $L \sim 10^{-4} \, L_{\odot} \, \mbox{due to} \label{eq:L}$ crystallization

White Dwarf Star Formation White Dwarf Star Structure White Dwarf Star Evolution

White Dwarf H-R Diagram

white dwarfs follow temperature-luminosity relation for constant radius:

$$\log L = 4 \log T_{\rm eff} +$$

 $+2\log R + \log (4\pi\sigma)$

White Dwarf Star Formation White Dwarf Star Structure White Dwarf Star Evolution

- ∢ 同 ▶ - ∢ 三

э

White Dwarf Spectra

Spectral Type	Characteristics
DA	Balmer Lines only: no He I or metals present
DB	He I lines (4026Å, 4471Å, 4713Å) : no H or metals present
DO	He II lines (4686Å)
\mathbf{DZ}	Metal lines only (CaII, Fe, O): no H or He
$\mathbf{D}\mathbf{Q}$	Carbon features, C_2
DC	Continuous spectrum; no lines

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 36: White Dwarfs

White Dwarf Star Formation White Dwarf Star Structure White Dwarf Star Evolution

White Dwarf Birth and Evolution in HRD

