Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Overview

White Dwarf Star Structure

- White Dwarf Star Evolution
- White Dwarfs in the HRD

White Dwarf Star Structure

White Dwarf Structure

Structure of a WD (sketch)

- degenerate core with constant temperature, T_c,
 - radius $r_{\rm b}$, and mass $r_{\rm b}$
- non-degenerate envelope with constant luminosity
- white dwarf radius R

approximate picture:

- \bullet degenerate electron gas is good heat conductor \Rightarrow
- assume core of mass $\textit{r}_{b} \approx \textit{M},$ of constant $\textit{T} \approx \textit{T}_{c},$ and radius \textit{r}_{b}
- envelope has small mass, no energy generation, ideal gas \Rightarrow constant luminosity F = L
- for the envelope the structure equations reduce do

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\rho \frac{GM}{r^2} \,, \quad \frac{\mathrm{d}T}{\mathrm{d}r} = -\frac{3}{4ac} \frac{\kappa \rho}{T^3} \frac{L}{4\pi r^2}$$

• assume power-law Kramers opacity for envelope

$$\kappa = \kappa_0 \rho T^{-7/2} = \kappa_0 \frac{\mu}{\mathcal{R}} P T^{-9/2}$$

combining the three equations we obtain

$$P \,\mathrm{d}P = \frac{16\pi a c \mathcal{R}G}{3\kappa_0 \mu} \frac{M}{L} T^{15/2} \,\mathrm{d}T$$

• integrating inward from the surface where P = 0 = T we obtain

$$P(T) = \left(\frac{64\pi a c \mathcal{R}G}{51\kappa_0 \mu}\right)^{1/2} \left(\frac{M}{L}\right)^{1/2} T^{17/4}$$

• Using the ideal gas equation we may rewrite this in the form

$$\rho(T) = \left(\frac{64\pi a c \mu G}{51\kappa_0 \mathcal{R}}\right)^{1/2} \left(\frac{M}{L}\right)^{1/2} T^{13/4}$$

• let us define the transition from non-degenerate envelope to degenerate core as the location where ideal and (completely) degenerate electron gas pressure become equal to define location $r_{\rm b}$:

$$\left[\mathcal{R}\frac{\rho}{\mu_{\rm e}}T\right]_{\rm b} = \left[K_1'\left(\frac{\rho}{\mu_{\rm e}}\right)^{5/3}\right]_{\rm b}, \quad \rho(r_{\rm b}) = \mu_{\rm e}\left(\frac{\mathcal{R}T(r_{\rm b})}{K_1'}\right)^{3/2}$$

- at this location the envelope temperature must fit the core temperature, T_c , and the density should be continuous
- combining with the previous equation we obtain

$$\frac{L}{M} = C_{\rm WD} \ T_{\rm c}^{7/2} \,, \quad C_{\rm WD} = \frac{64\pi a c G K_1'^3 \mu}{51 \mathcal{R}^4 \kappa_0 \mu_{\rm e}^2}$$

• for typical composition we obtain for luminosity

$$L \approx 6.8 \times 10^{-3} \left(\frac{T_{\rm c}}{10^7 \, {\rm K}}\right)^{7/2} \left(\frac{M}{{\rm M}_\odot}\right) {\rm L}_\odot$$

• and for central temperature

$$T_{\rm c} \approx 4 \times 10^7 \left(\frac{L}{M} \frac{{\rm M}_\odot}{{\rm L}_\odot} \right)^{2/7} {\rm K}$$

-

Overview

White Dwarf Star Structure

2 White Dwarfs

- White Dwarf Star Evolution
- White Dwarfs in the HRD

- Is the white dwarf in hydrostatic equilibrium?
- Is the white dwarf in thermal equilibrium?
- Is the white dwarf in nuclear equilibrium?
- The white dwarf shines. What is the energy source?
- Try to find the answers yourself (2 min).
- Discuss with your neighbor(s) and write down your concordance solution. (2 min)
- Open discussion. (2 min)

White Dwarf Star Evolution White Dwarfs in the HRD

White Dwarf Cooling

• Luminosity of white dwarf from internal energy of the ions (ideal gas)

$$U_{\rm I} = \frac{3}{2} \frac{\mathcal{R}}{\mu_{\rm I}} M T_{\rm c}$$

 $\bullet \Rightarrow {\sf luminosity \ equals \ loss \ in \ internal \ energy}$

$$L = -\frac{\mathrm{d}U_{\mathrm{I}}}{\mathrm{d}t} = -\frac{3}{2}\frac{\mathcal{R}}{\mu_{\mathrm{I}}}M\frac{\mathrm{d}T_{\mathrm{c}}}{\mathrm{d}t}$$

• using $L \propto T_{\rm c}^{7/2}$ (recall $L = M \, C_{\rm WD} \, T_{\rm c}^{7/2}$) we can write

$$L = -\frac{3}{7}\frac{\mathcal{R}}{\mu_{\rm I}}M\frac{T_{\rm c}}{L}\frac{\mathrm{d}L}{\mathrm{d}t}, \quad \frac{\mathrm{d}L}{\mathrm{d}t} = -\frac{7}{3}\frac{\mu_{\rm I}}{\mathcal{R}}\frac{L^2}{T_{\rm c}M}$$

• using $L = M C_{WD} T_c^{7/2}$ again, we eliminate L and obtain

$$\frac{\mathrm{d}L}{\mathrm{d}t} = -\frac{7}{3}\frac{\mu_{\mathrm{I}}}{\mathcal{R}}MC_{\mathrm{WD}}^{2}T_{\mathrm{c}}^{6}$$

• define cooling time as time scale of luminosity drop (by e):

Recap White Dwarfs

$$\tau_{\rm cool} = -\frac{{\rm d}t}{{\rm d}\ln L} = -L\left(\frac{{\rm d}L}{{\rm d}t}\right)^{-1} = \frac{3}{7}\frac{\mathcal{R}}{\mu_{\rm I}}\frac{M}{L}T_{\rm c}$$

White Dwarf Star Evolution

• eliminating T_c using $L/M = C_{WD} T_c^{7/2}$ we obtain

$$\tau_{\rm cool} = \frac{3}{7} \frac{\mathcal{R}}{\mu_{\rm I} C_{\rm WD}^{2/7}} \left(\frac{M}{L}\right)^{5/7} \approx 2.5 \times 10^6 \left(\frac{M}{\rm M_{\odot}}\right)^{5/7} \left(\frac{L}{\rm L_{\odot}}\right)^{-5/7} \rm yr$$

• e.g., cooling time scale for
$$1\,M_\odot$$
 WD at (to) $10^{-1}\,L_\odot\colon\sim 10^7\,\text{yr}$ $10^{-4}\,L_\odot\colon\sim 2{\times}10^9\,\text{yr}$

White Dwarf Cooling Time

NOTES:

- white dwarf quickly "out-shined" by surrounding planetary nebula ($L=10^4\,L_\odot)$
- $\bullet\,$ when $L\sim 10^{-4}$ is reached, $\,T_{\rm c}$ bcomes low enough for crystallization to set in
 - first rise in heat capacity from $3/2k_{\rm B}/{\rm ion}$ to $3k_{\rm B}/{\rm ion}$
 - then, however, heat capacity drops quickly $\propto T^3$ (below Debye Temperature)
 - $\bullet \ \Rightarrow {\sf fast \ drop \ in \ WD \ luminosity}$
 - \Rightarrow fewer WDs in given *L* bin
- radius of WD essentially constant
 - \Rightarrow WDs of given mass follow track of constant radius

$$\log L = 4 \log T_{\rm eff} + 2 \log R + \log (4\pi\sigma)$$

White Dwarf Star Evolution White Dwarfs in the HRD

White Dwarf Luminosity Function

• considering the white dwarf cooling function

$$\tau_{
m cool} \propto L^{-5/7}$$

→ number of stars within given luminosity bin

$$\Phi \propto L^{-5/7}$$

• drop-off below $L \sim 10^{-4} \, L_\odot \, \, \text{due to} \label{eq:L}$ crystallization

White Dwarf Star Evolution White Dwarfs in the HRD

White Dwarf H-R Diagram

white dwarfs follow temperature-luminosity relation for constant radius:

 $\log L = 4 \log T_{\rm eff} +$

 $+2\log R + \log (4\pi\sigma)$

æ

▲ 同 ▶ ▲ 目

White Dwarf Spectra

Spectral Type	Characteristics
DA	Balmer Lines only: no He I or metals present
DB	He I lines (4026Å, 4471Å, 4713Å) : no H or metals present
DO	He II lines (4686Å)
\mathbf{DZ}	Metal lines only (CaII, Fe, O): no H or He
$\mathbf{D}\mathbf{Q}$	Carbon features, C_2
DC	Continuous spectrum; no lines

White Dwarfs White Dwarfs in the HRD White Dwarf Birth and Evolution in HRD

