Astrophysics I: Stars and Stellar Evolution AST 4001

Yong-Zhong Qian¹

¹School of Physics and Astronomy University of Minnesota

Stars and Stellar Evolution, Fall 2008

Overview

- Recap
 - Spectral Type
 - Luminosity Class
 - Planck Spectrum
- 2 Stellar Atmospheres
 - Kirchhoff's Law

Classification of Stars by Spectral Type

We classify stars by their spectral type:

$$O-B-A-F-G-K-M$$

$$R-N$$

blue

white

red

- We use subtypes 0-9 with 0 being the hottest and 9 the coolest within each class.
- That is, O9 is followed by B0.

Classification of Stars by Luminosity

Classification of stars by luminosity classes:

```
Ia - Hypergiants
```

- I Supergiants
- II Bright Giants
- III Giants
- IV Subgiants
- V Main Sequence (Dwarfs)
- VI Subdwarfs.

4 D > 4 B > 4 B > B = 90 P

Classification in the HRD

Spectral type and luminosity class in the HRD.

Planck Spectrum

Planck Function - Limiting Cases

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1} \,, \quad B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} \,,$$

Rayleigh-Jeans for long wavelength ($h\nu/kT\ll 1$):

$$B_{\nu}(T) = \frac{2h\nu^2kT}{c^2}$$

Wien Limit for short wavelength $(h\nu/kT\gg 1)$:

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2}e^{-h\nu/kT}$$

Wien Displacement law:

$$\lambda_{\rm max} \, T = 2.9 \times 10^{-3} {\rm m\,K} \, , \quad \frac{c}{\nu_{\rm max}} \, T = 5.1 \times 10^{-3} {\rm m\,K} \, \label{eq:lambda}$$

Overview

- Recap
 - Spectral Type
 - Luminosity Class
 - Planck Spectrum
- 2 Stellar Atmospheres
 - Kirchhoff's Law

Input for Atmosphere Model

An atmosphere model determines T and ρ at the surface of the star as a function of depth.

As input parameters from the star we require

- \bullet $T_{\rm eff}$
- $g = GM/R^2$
- 3 chemical composition (X, Y, Z), likely even the abundances of individual elements within Z

The output of an atmosphere model should provide the details of continuous and spectral energy distribution, colors, and angle dependence of the radiation field.

Generally, such a model is very complicated. In this class will examine some simplified models.

Scattering of photons

Absorption and Emission

Emission Coefficient

Given a frequency-dependent volume emission coefficient, j_{ν} , the energy that is emitted per unit volume dV per opening angle d ω per frequency bin $\nu + d\nu$ is given by

$$\mathrm{d}\epsilon_{\nu} = j_{\nu} \mathrm{d}\nu \mathrm{d}V \mathrm{d}\omega$$

If the emission is isotropic, the total energy emitted in all directions per second is then given by

$$4\pi dV \int j_{\nu} d\nu$$

Absorption Coefficient

Given an absorption coefficient κ_{ν} the initial intensity I_{ν} is reduced due to absorption by $\mathrm{d}I_{\nu}$ according to

$$\frac{\mathsf{d} I_{\nu}}{I_{\nu}} = -\kappa_{\nu} \mathsf{d} s = -\kappa_{\nu,\mathsf{M}} \rho \mathsf{d} s$$

where $\kappa_{\nu,\mathsf{M}}$ is called the mass absorption coefficient.

$$([\kappa_{
u,\mathsf{M}}]=\mathsf{cm}^2/\mathsf{g})$$

We define the optical depth au at frequency u by

$$au_
u = \int \kappa_
u \mathsf{d} s$$

or $\tau_{\nu}=\kappa_{\nu}s$ if κ_{ν} is independent of location. The intensity then drops as from its initial value $I_{\nu,0}$ according to extinction law

$$I_{
u}=I_{
u,0}e^{- au_{
u}}$$

Kirchhoff's Law

- In strict thermodynamic equilibrium the total emission from a cylinder with base dA and thickness ds, per d ω and d ν j_{ν} d ν dA ds d ω has to be equal to the absorption d I_{ν} dA d ω d ν .
- Using

$$\frac{\mathsf{d}I_{\nu}}{I_{\nu}} = -\kappa_{\nu}\mathsf{d}s$$

and the fact that in thermodynamic equilibrium the specific intensity $I_{\nu}=B_{\nu}$ (Planck function) we obtain

$$j_{\nu} = \kappa_{\nu} B_{\nu}(T) .$$

This relation is called Kirchhoff's Law.

