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Classification of Stars by Spectral Type

We classify stars by their spectral type:

blue white red

We use subtypes 0-9 with 0 being the hottest and 9 the
coolest within each class.

That is, O9 is followed by B0.
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Classification of Stars by Luminosity

Classification of stars by luminosity classes:
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Classification in the HRD

Spectral type and luminosity
class in the HRD.
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Planck Spectrum
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Planck Function - Limiting Cases

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
, Bλ(T ) =

2hc2

λ5

1

ehc/λkT − 1
,

Rayleigh-Jeans for long wavelength (hν/kT ¿ 1):

Bν(T ) =
2hν2kT

c2

Wien Limit for short wavelength (hν/kT À 1):

Bν(T ) =
2hν3

c2
e−hν/kT

Wien Displacement law:

λmaxT = 2.9× 10−3m K ,
c

νmax
T = 5.1× 10−3m K
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Input for Atmosphere Model

An atmosphere model determines T and ρ at the surface of the
star as a function of depth.
As input parameters from the star we require

1 Teff

2 g = GM/R2

3 chemical composition (X , Y , Z ), likely even the abundances of
individual elements within Z

The output of an atmosphere model should provide the details of
continuous and spectral energy distribution, colors, and angle
dependence of the radiation field.

Generally, such a model is very complicated. In this class will
examine some simplified models.
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Scattering of photons
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Absorption and Emission
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Emission Coefficient

Given a frequency-dependent volume emission coefficient, jν , the
energy that is emitted per unit volume dV per opening angle dω
per frequency bin ν + dν is given by

dεν = jνdνdV dω

If the emission is isotropic, the total energy emitted in all
directions per second is then given by

4πdV

∫
jνdν
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Absorption Coefficient

Given an absorption coefficient κν the initial intensity Iν is reduced
due to absorption by dIν according to

dIν
Iν

= −κνds = −κν,Mρds

where κν,M is called the mass absorption coefficient.
([κν,M] = cm2/g)
We define the optical depth τ at frequency ν by

τν =

∫
κνds

or τν = κνs if κν is independent of location. The intensity then
drops as from its initial value Iν,0 according to extinction law

Iν = Iν,0e
−τν
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Kirchhoff’s Law

In strict thermodynamic equilibrium the total emission from a
cylinder with base dA and thickness ds, per dω and dν –
jν dν dA ds dω – has to be equal to the absorption –
dIν dA dω dν.

Using
dIν
Iν

= −κνds

and the fact that in thermodynamic equilibrium the specific
intensity Iν = Bν (Planck function) we obtain

jν = κνBν(T ) .

This relation is called Kirchhoff’s Law.
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