Astrophysics I: Stars and Stellar Evolution AST 4001

Yong-Zhong Qian¹

¹School of Physics and Astronomy University of Minnesota

Stars and Stellar Evolution, Fall 2008

- 4 国 8 14

つくへ

[Luminosity Class](#page-3-0) [Planck Spectrum](#page-5-0)

Overview

- **•** [Spectral Type](#page-2-0)
- **[Luminosity Class](#page-3-0)**
- [Planck Spectrum](#page-5-0)

[Stellar Atmospheres](#page-7-0) • [Kirchhoff's Law](#page-8-0)

 \sim \sim

 \sim

点 \mathbf{h} G. \sim э

-4

×.

つくへ

э

[Spectral Type](#page-2-0) [Luminosity Class](#page-3-0) [Planck Spectrum](#page-5-0)

Classification of Stars by Spectral Type

• We classify stars by their spectral type:

$$
O-B-A-F-G-K-M
$$

$$
R-N
$$

blue white red

- We use subtypes 0-9 with 0 being the hottest and 9 the coolest within each class.
- That is, O9 is followed by B0.

Alberta Card

つくい

[Spectral Type](#page-2-0) [Luminosity Class](#page-3-0) [Planck Spectrum](#page-5-0)

Classification of Stars by Luminosity

Classification of stars by luminosity classes:

- $Ia Hypergiants$
- Supergiants T
- **Bright Giants** \mathbf{H}
- Giants III
- IV Subgiants
- \mathbf{V} Main Sequence (Dwarfs)
- Subdwarfs. **VI**

4 17 18 \overline{A} \sim 医毛毛 医三角

 QQ

[Luminosity Class](#page-3-0) [Planck Spectrum](#page-5-0)

Classification in the HRD

Spectral type and luminosity class in the HRD.

 4.17

 \sim

点

 \sim

э × 性 つくへ

Ξ

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 47: [Stellar Atmospheres - Kirchkoff's Law](#page-0-0)

[Luminosity Class](#page-3-0) [Planck Spectrum](#page-5-0)

Planck Spectrum

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 47: [Stellar Atmospheres - Kirchkoff's Law](#page-0-0)

∢母

 \sim × э $\,$ \mathbf{q} э $2Q$

∍ **B**

[Spectral Type](#page-2-0) [Luminosity Class](#page-3-0) [Planck Spectrum](#page-5-0)

Planck Function - Limiting Cases

$$
B_{\nu}(\mathcal{T}) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/k\mathcal{T}} - 1}, \quad B_{\lambda}(\mathcal{T}) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda k\mathcal{T}} - 1},
$$

Rayleigh-Jeans for long wavelength $(h\nu/kT \ll 1)$:

$$
B_{\nu}(T)=\frac{2h\nu^2kT}{c^2}
$$

Wien Limit for short wavelength $(h\nu/kT \gg 1)$:

$$
B_{\nu}(T)=\frac{2h\nu^3}{c^2}e^{-h\nu/kT}
$$

Wien Displacement law:

$$
\lambda_{\text{max}}\mathcal{T} = 2.9 \times 10^{-3} \text{m K}, \quad \frac{c}{\nu_{\text{max}}}\mathcal{T} = 5.1 \times 10^{-3} \text{m K}
$$

Ξ

 Ω

Overview

- **[Spectral Type](#page-2-0)**
- **[Luminosity Class](#page-3-0)**
- **[Planck Spectrum](#page-5-0)**

 \sim \sim

э \sim つくへ

∍

Input for Atmosphere Model

An atmosphere model determines T and ρ at the surface of the star as a function of depth.

As input parameters from the star we require

- \bullet T_{eff}
- $g = GM/R^2$
- \bullet chemical composition (X, Y, Z) , likely even the abundances of individual elements within Z

The output of an atmosphere model should provide the details of continuous and spectral energy distribution, colors, and angle dependence of the radiation field.

Generally, such a model is very complicated. In this class will examine some simplified models.

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

 200

Scattering of photons

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 47: [Stellar Atmospheres - Kirchkoff's Law](#page-0-0)

 $2Q$

∍

Absorption and Emission

イロン イ母ン イヨン イヨン

E

 299

Emission Coefficient

Given a frequency-dependent volume emission coefficient, j_{ν} , the energy that is emitted per unit volume dV per opening angle d ω per frequency bin $\nu + d\nu$ is given by

$$
\mathrm{d}\epsilon_\nu = j_\nu \mathrm{d}\nu \mathrm{d}V \mathrm{d}\omega
$$

If the emission is isotropic, the total energy emitted in all directions per second is then given by

$$
4\pi \mathsf{d} V \int j_\nu \mathsf{d} \nu
$$

a mara a mara

つくい

Absorption Coefficient

Given an absorption coefficient κ_{ν} the initial intensity I_{ν} is reduced due to absorption by dI_{ν} according to

$$
\frac{\mathrm{d}I_{\nu}}{I_{\nu}}=-\kappa_{\nu}\mathrm{d}s=-\kappa_{\nu,\mathrm{M}}\rho\mathrm{d}s
$$

where $\kappa_{\nu,M}$ is called the mass absorption coefficient. $([k_{\nu M}] = \text{cm}^2/\text{g})$ We define the optical depth τ at frequency ν by

$$
\tau_\nu = \int \kappa_\nu \mathsf{d} \mathsf{s}
$$

or $\tau_{\nu} = \kappa_{\nu} s$ if κ_{ν} is independent of location. The intensity then drops as from its initial value $I_{\nu,0}$ according to extinction law

$$
I_\nu=I_{\nu,0}e^{-\tau_\nu}
$$

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow \mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow$

つくい

Kirchhoff's Law

- In strict thermodynamic equilibrium the total emission from a cylinder with base dA and thickness ds, per d ω and d ν – j_{ν} d ν dA ds d ω – has to be equal to the absorption – dL , dA d ω d ν .
- **•** Using

$$
\frac{\mathrm{d}I_{\nu}}{I_{\nu}}=-\kappa_{\nu}\mathrm{d}s
$$

and the fact that in thermodynamic equilibrium the specific intensity $I_{\nu} = B_{\nu}$ (Planck function) we obtain

$$
j_{\nu}=\kappa_{\nu}B_{\nu}(T)\ .
$$

No. Administration Commission

 200

• This relation is called Kirchhoff's Law.