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Input for Atmosphere Model

An atmosphere model determines T and ρ at the surface of the
star as a function of depth.
As input parameters from the star we require

1 Teff

2 g = GM/R2

3 chemical composition (X , Y , Z ), likely even the abundances of
individual elements within Z

The output of an atmosphere model should provide the details of
continuous and spectral energy distribution, colors, and angle
dependence of the radiation field.

Generally, such a model is very complicated. In this class will
examine some simplified models.
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Scattering of photons
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Absorption and Emission
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Emission Coefficient

Given a frequency-dependent volume emission coefficient, jν , the
energy that is emitted per unit volume dV per opening angle dω
per frequency bin ν + dν is given by

dεν = jνdνdV dω

If the emission is isotropic, the total energy emitted in all
directions per second is then given by

4πdV

∫
jνdν
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Absorption Coefficient

Given an absorption coefficient κν the initial intensity Iν is reduced
due to absorption by dIν according to

dIν
Iν

= −κνds = −κν,Mρds

where κν,M is called the mass absorption coefficient.
([κν,M] = cm2/g)
We define the optical depth τ at frequency ν by

τν =

∫
κνds

or τν = κνs if κν is independent of location. The intensity then
drops as from its initial value Iν,0 according to extinction law

Iν = Iν,0e
−τν
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Kirchhoff’s Law

In strict thermodynamic equilibrium the total emission from a
cylinder with base dA and thickness ds, per dω and dν –
jν dν dA ds dω – has to be equal to the absorption –
dIν dA dω dν.

Using
dIν
Iν

= −κνds

and the fact that in thermodynamic equilibrium the specific
intensity Iν = Bν (Planck function) we obtain

jν = κνBν(T ) .

This relation is called Kirchhoff’s Law.
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Local Thermodynamic Equilibrium (Recap)

Atmosphere is not in strict thermodynamic equilibrium (TE):
temperature at bottom of a small volume element slightly
different than at top
⇒ gas temperature slightly different from radiation
temperature

We define local thermodynamic equilibrium (LTE) when T
does not change much over mean free path of photon

⇒ photon is absorbed at almost the same temperature as it
was emitted
⇒ gas temperature and radiation temperature are the same

⇒ Kirchhoff law applies

However:
radiation field is not isotropic
net flux is not zero
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Mean Free Path (Recap)

Assume a slab of matter with no emission and incident intensity
Iν,0 and κν independent of distance s from the surface of the slab.

The mean free path of a photon s̄ is defined by

s̄ =

∫∞
0 s Iνds∫∞
0 Iνds

=
Iν,0

∫∞
0 s e−κνsds

Iν,0

∫∞
0 e−κνsds

= − d

dκν

(
ln

∫ ∞

0
e−κsds

)
=

1

κν

That is, at location s̄ = 1/κν the radiation has dropped to 1/e of
the initial value.
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Quiz

At what distance has the radiation dropped by a factor 10?
By a factor 100?

Instructions:

Work on this yourself and write down your solution (2 min)

Discuss in groups of 2-3 (2 min)
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Radiative Transfer

cylindrical volume,
angle Θ,
bottom ara dS ,
length dl
at depth r
⇒ dl = sec Θdr

bean opening angle
dω

frequency bin
ν . . . ν + dν

⇒ Energy going
through the cylinder
is Iν dν dω
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Radiative Transfer

for convenience we define distance from surface in opposite
direction to r : dr = −dz

the change in energy can then be written as
dIν dν dω
it has two contributions:

absorption:

−Iν κν dl dν dω = +Iν κν dz sec Θdν dω

where we used dl = − sec Θdz
emission, using Kirchhoff’s law:

jν dl dν dω = κν Bν(T ) dl dν dω = −κν Bν(T ) sec Θ dz dν dω

The net change in intensity then is:

dIν(z , Θ) = Iν(z , Θ) κν dz sec Θ− Bν(T ) κν dz sec Θ
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Radiative Transfer

Using the definition of optical depth inside the star τν ,

dτν = κν dz

we can write

dIν(z , Θ) = Iν(z , Θ) κν dz sec Θ− Bν(T ) κν dz sec Θ

in the form of the equation of transfer:

cos Θ
dIν(z , Θ)

dτν
= Iν(z , Θ)− Bν(T )

Note: This simple LTE approximation assumes complete
absorption of photon and re-emission in random direction;
differential directional scattering is ignored. Good for many
situations.
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Radiative Equilibrium

if the mass element under consideration has no net production
or absorption of energy, in order to be in steady state, the
total energy emitted in all directions from element ds in all
frequencies

4π

∫ ∞

0
κν Bν(T ) dν ds

has to equal the total energy absorbed from all directions by
element ds: ∫ ∞

0

∮
4π

κν Iν(z , Θ) dω dν ds

Note: we neglect other forms of energy transport like
conduction or convection
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Radiation Moments

for further discussion we define three moments:

mean intensity (0th moment):

Jν(z) =
1

4π

∮
4π

Iν(z , Θ)dω

flux (1st moment):

Fν(z) =

∮
4π

Iν(z , Θ) cosΘdω

2nd moment:

Kν(z) =
1

4π

∮
4π

Iν(z , Θ) cos2 Θdω

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 49: Gray Atmosphere



Recap
Stellar Atmosphere

Stellar Atmospheres
Radiative Transfer
Radiative Equilibrium

Radiative Equilibrium

assuming κν is independent of direction (isotropic) we can
now write∮

4π
κν Iνdω ds = κν

∮
4π

Iνdω ds = 4π κν Jν ds

and the condition for radiative equilibrium becomes

4π

∫ ∞

0
κν Bν(T ) dν ds = 4π

∫ ∞

0
κν Jν(z) dν ds

or ∫ ∞

0
κν [Bν(T )− Jν(z)] dν = 0
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Radiative Equilibrium

introducing

µ = cosΘ , dµ = − sin ΘdΘ

we can write the radiative flux

Fν = 2π

∫ π

0
Iν(z , Θ) sin Θ cos Θ dΘ = 2π

∫ +1

−1
Iν(z , µ) µ dµ

and the intensity

Jν =
1

4π

∮
4π

Iν(z , Θ) dω =
1

4π

∫ π

0
2πIν(z , Θ) sin Θ dΘ

Jν =
1

2

∫ +1

−1
Iν(z , µ) dµ

and the equation of transfer simplifies to

µ
dIν(z , µ)

κνdz
= Iν(z , µ)− Bν(T )
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Radiative Equilibrium

integrating the transfer equation with respect to µ we obtainZ +1

−1

µ
dIν(z , µ)

κνdz
dµ =

1

κµ

d

dz

Z +1

−1

µ Iν(z , µ) dµ =

Z +1

−1

[Iν(z , µ)− Bν(T )] dµ

substituting the flux we obtain

1

2πκν

dFν(z)

dz
=

Z +1

−1

Iν(z , µ) dµ−
Z +1

−1

Bν(T ) dµ = 2 Jν(z)− 2 Bν(T )

multiplying by κν/2 and integration over ν gives

1

4π

d

dz

∫ ∞

0
Fν(z) dν =

∫ ∞

0
κν [Jν(z)− Bν(T )] dν = 0

the last equality follows from radiative equilibrium.

That is, the frequency-integrated flux F (z) =
∫∞
0 Fν(z) dν is

independent of depth, dF/dz = 0.
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Summary of Temperature in Atmosphere

atmosphere in local thermodynamic equilibrium
Kirchhoff’s law applies: jν = κνBν(T )

plane parallel atmosphere with a thickness much smaller than
radius of star
curvature can be neglected

assume gray atmosphere, i.e., a suitable average absorption
coefficient κ̄ can be found so that all quantities can be
integrated

the atmosphere is in radiative equilibrium
no net energy is generated or absorbed (consumed).
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Radiative Transfer in Atmosphere

compute the first moment of the transfer equation

cos Θ
dIν(z , Θ)

dτν
= Iν(z , Θ)− Bν(T )

by multiplication with cos Θ and integration over all solid
angles∮

4π
cos2 Θ

dIν(z , Θ)

dτν
dω =

d

dτν

∮
4π

cos2 Θ Iν(z , Θ) dω = . . .

. . . =

∮
4π

cos Θ Iν(z , Θ) dω −
∮

4π
cos ΘBν(T ) dω

Note that because Bν(T ) is isotropic, the last term vanishes
and we obtain

dKν(z)

dτν
=

Fν(z)

4π
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Radiative Transfer in Gray Atmosphere

define mean opacity κ̄ such that we obtain a
mean optical depth τ by

dτ = κ̄ dz

The frequency integral of the first moment of the transfer
equation, ∫ ∞

0

dKν(z)

dτν
dν =

∫ ∞

0

Fν(z)

4π
dν

then becomes
dK (z)

dτ
=

F (z)

4π
=

F

4π
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Radiative Transfer in Gray Atmosphere

differentiation with regard to τ yields in radiative equilibrium

d2K (z)

dτ2
=

1

4π

dF

dτ
= J − B = 0

where J and B are now frequency-integrated quantities.

to evaluate K we will assume that I is isotropic; since we only
multiply it with a positive quantity, cos2 Θ, there will be no
effect from almost, but not quite, cancellation of two large
quantities (at top and bottom) as it is in the case of the flux

we hence can approximate from the definition of K

K =
1

4π

∮
4π

I cos2 Θ dω =
1

2
J

∫ π

0
cos2 Θ sin Θ dΘ =

1

3
J

(Eddington approximation) [yet another]
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Radiative Transfer in Gray Atmosphere

we can now use K = 1
3J in the first moment of the transfer

equation,
dK (z)

dτ
=

F

4π
and obtain

dJ(z)

dτ
=

3

4π
F

integration with regards to τ then gives

J =
3

4π
F τ + const.

But we also have from the definition of Teff , which is
considered to be a constant:

J = B =
σ

π
T 4 =

3

4

σ

π
T 4

eff(τ + c3)
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Radiative Transfer in Gray Atmosphere

to derive the constant c3 we consider that at the surface,
τ = 0, there is no inward flux, but we assume that in our
approximation the intensity at the surface is independent of
direction. Let us call the intensity at the surface I+

0 .

at the surface we then have

J(0) =
2π

4π

∫ π/2

0
I (0) sin Θ dΘ =

I+
0

2

F (0) = 2π

∫ π/2

0
I (0) cos Θ sin Θ dΘ = πI+

0

and hence

J(0) =
F (0)

2π
= B(0) =

σT 4(0)

π
=

1

2π
σ T 4

eff
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therefore, at the surface we now have

T 4(0) =
1

2
T 4

eff

from
σ

π
T 4 =

3

4

σ

π
T 4

eff(τ + c3)

we obtain
1

2
T 4

eff =
3

4
T 4

eff c3 ⇒ c3 =
2

3

and the final distribution of temperature in a gray atmosphere
is

T 4 =
3

4
T 4

eff

(
τ +

2

3

)
Note that T = Teff at τ = 2/3
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Approximation Compared with True Stratification

more generally we can
write

T 4 =
3

4
T 4

eff (τ + q(τ))
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Quiz

Compute the moments of I : J, F , and K

in the center of the star

in thermodynamic equilibrium (TE)

Instructions:

Work on this yourself and write down your solution (2 min)

Discuss in groups of 2-3 (2 min)
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