Astrophysics I: Stars and Stellar Evolution AST 4001

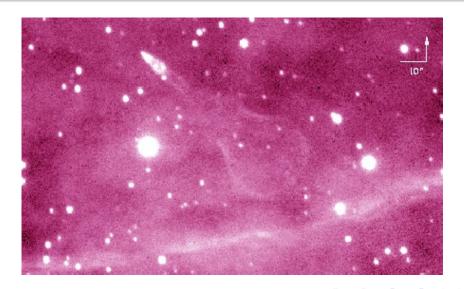
Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

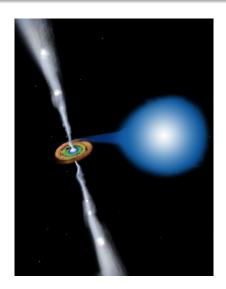
Stars and Stellar Evolution, Fall 2008


Overview

Variations on Afterlife

Accretion Disks

- Novae and X-ray Bursts
 - Classical Novae
 - Type I X-Ray Bursts

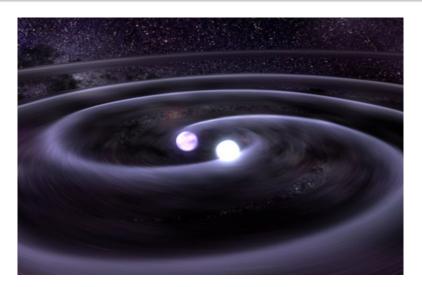

The Guitar Nebula

Compact Binaries

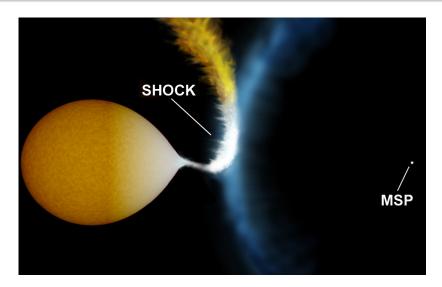
- compact remnants
 - white dwarf
 - neutron star
 - black hole
- types of systems
 - compact remnant + ...
 - main sequence star
 - evolved star (red) (super) giant
 - two compact stars
 - double WD, double NS (double pulsar), double BH
 - WD+NS, WD+BH
 - NS+BH

Accreting Binary

Evolution of Compact Binaries


- mass transfer
 - ⇒ accretion disk
 - \Rightarrow X-ray binary

What can it tell about the type of the compact star?


- loss of angular momentum (braking)
 - wind
 - magnetic fields
 - gravitational waves
 - ⇒ orbits gets increasingly tighter
 - merger
 - ⇒ gravitational wave signal
 - disruption of the less compact star
 - ⇒ accretion disk, ...

Binary WD

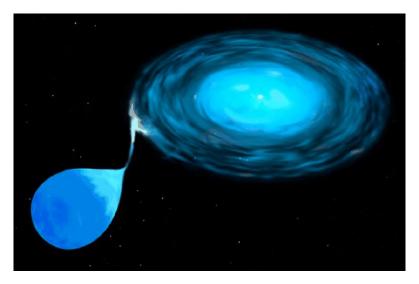
Shock Wave in Millisecond Pulsar

Evolution of Compact Binaries

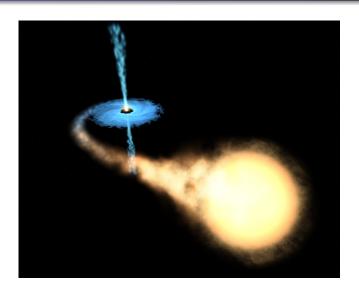
accumulation of accreted material

- composition of accreted material?
- does accreted material burn?
- burning stable or not?
- thermonuclear runaway?
 - Novae how much material is ejected? does WD star grow?
 - detonation of "thick" H/He layer on WD surface?
 - supernovae
 - Type Ia CO WDs
 - AIC ONeMg WDs
 - (Type I) X-ray bursts
- stability of the accretion disk
 - outbursts from disk instabilities

Neutron Star Merger

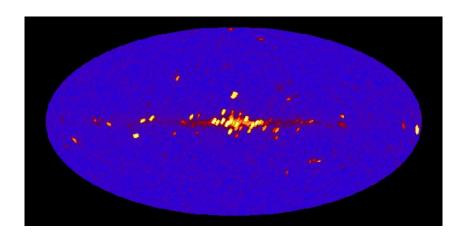

Final Fate of Compact Binaries

merger or disruption of one of the stars


- disruption
 - tidal disruption of less compact star
 - WD + MS/post-MS star: mass transfer
 - CO WD: ignition, Type Ia SN, no remnant
 - ONeMg WD: AIC ⇒ NS:
 - * "kick" during NS formation ⇒ system separates
 - * NS + MS/post-MS star
- merger
 - $NS+NS \Rightarrow short GRBs$
 - WD+WD ⇒ supernova?
 - WD+MS/post-MS star \Rightarrow AIC
 - BH+BH \Rightarrow GR wave signal
 - BH+NS ⇒ accretion disk, GRB?
 - WD+NS/BH ⇒ fast transient form accretion disk...
 NS→BH collapse?

Accreting Binary

Accretion onto Black Hole


Overview

Variations on Afterlife

1 Accretion Disks

- Novae and X-ray Bursts
 - Classical Novae
 - Type I X-Ray Bursts

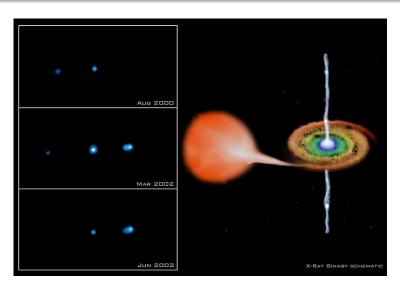
X-ray Sky

Steady State Accretion Disks

approximation for steady state "dust" accretion disks

$$\dot{M}(r) = \text{const.}$$

- angular momentum transport by viscosity or magnetic torques
- dissipate potential energy (minus kinetic energy) by radiation
- energy balance in steady state


$$-\dot{M}\frac{1}{2}\nabla\phi = \frac{GMM}{2r^2} = \sigma T^4 \frac{dA}{dr} = 4\pi r \sigma T^4$$

$$T^4 = rac{GM\dot{M}}{8\pi\sigma r^3}\,, \quad ext{more accurate derivation yields} \quad T^4 pprox rac{3GM\dot{M}}{8\pi\sigma r^3}$$

- gravitational potential gradient highest close to object, where disk area is smallest ⇒ disk hottest close to object
- see, e.g., W. K. Rose "Advanced Stellar Astrophysics", §9.2

X-Ray Binary Jet

Steady State Accretion Disks

- hot accretion disk shies in X-ray band ⇒ X-ray binaries
- accreting compact object often (usually) out-shines companion star especially in low-mass X-ray binaries
- in high-mass X-ray binaries compact star may just accrete part of the wind of the companion star
- highest T reached can tell about inner radius of disk
 ⇒ type of companion star (or radius of inner edge where disk is disrupted)
- in systems with NS, inner disk can be disrupted by strong magnetic field of NS

Accreting Binary Star

Quiz

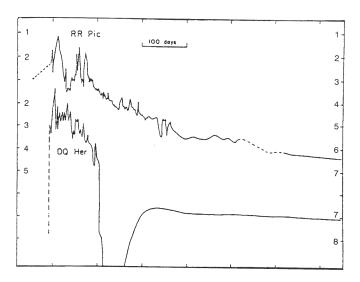
What is the Eddington luminosity for a WD, NS, and BH of $1 M_{\odot}$?

Compute Eddington accretion rate for WD ($R=10,000\,\mathrm{km}$), NS ($R=10\,\mathrm{km}$), and BH ($R=3\,\mathrm{km}$)

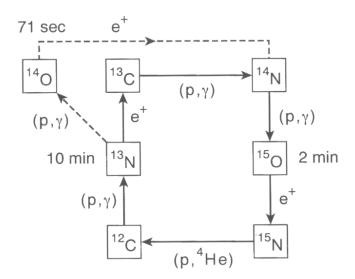
Overview

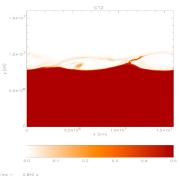
Variations on Afterlife

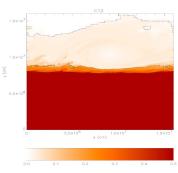
Accretion Disks


- Novae and X-ray Bursts
 - Classical Novae
 - Type I X-Ray Bursts

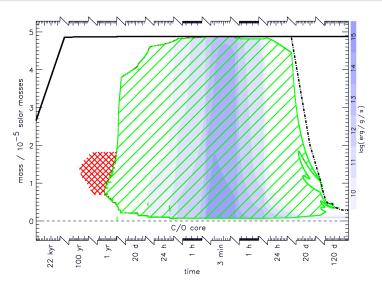
Classical Novae


- Accretion of H-rich material on WD in binary star system
- thermonuclear runaway of degenerate hydrogen layer
- "hot" CNO burning, possibly "breakout" from CNO cycle
- expansion of envelope, possibly engulfing of companion star
- enrichment of envelope in material of underlying WD "dredge up"
 - \Rightarrow Can CO WD grow?
 - \Rightarrow Can systems with Novae be progenitors of Type Ia SNe?
- We observe novae on CO WD and on ONeMg WDs

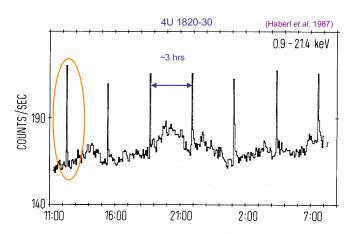

Light Curve of a Classical Nova

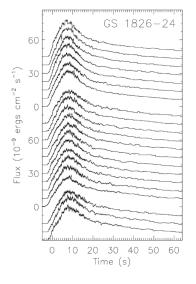

Nuclear Burning in a Classical Novae

Mixing in Nova Surface Layer



913, AMR levels -

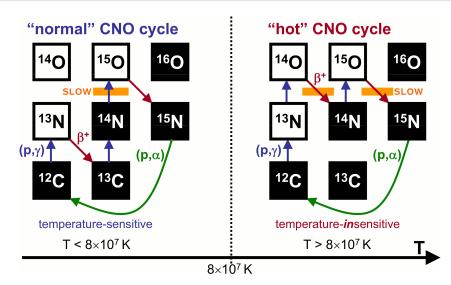

Nuclear Burning in a Classical Novae



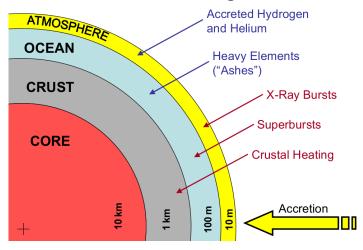
Type I X-Ray Bursts

- Accretion of H-rich or He-rich material on NS in binary star system
- eta eta-limited CNO cycle burning of accreted material if accretion rate is high enough, otherwise built up of degenerate H layer
- if all H burns before burst, built up of degenerate He layer
- thermonuclear runaway of degenerate hydrogen/helium layer
- burning by α , αp and rp-processes
- recurrence time hours to days

Thermonuclear Origin of X-ray Bursts

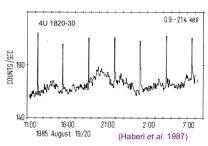

XRB Observations

- Repeated burst of X-rays
- · tens of seconds duration
- repeat time hours to days
- inferred luminosity close to Eddington


The most common thermonuclear explosion in nature!

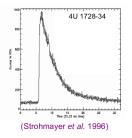
Hot CNO cycle

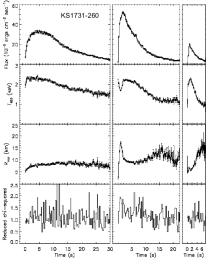
Structure of an Accreting Neutron Star



Energetics of Bursts

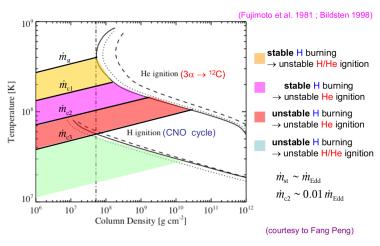
nuclear energy release

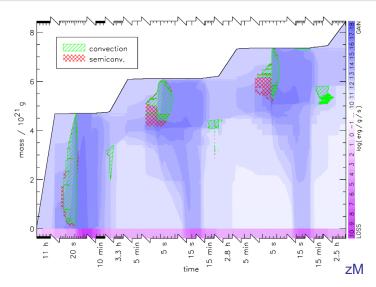

gravitational energy release


ratio of energies

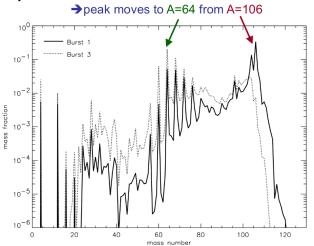
 $Q_{\text{nuc}} \approx (1-5) \text{ MeV / nucleon}$ $\frac{GM}{R} \approx 200 \text{ MeV / nucleon}$

$$\alpha = \frac{\int F_p dt}{\int F_b dt} \approx \frac{GM/R}{Q_{cur}} \approx 40 - 100$$


Flux

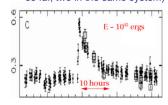

Temperature

Radius


(Muno et al. 2001)

Ignition and Accretion Rate Dependence

Comparison of ashes of "first" burst and later bursts



X-Ray Super-Bursts

Superbursts

Observations

- similar peak luminosity
- hours of duration (1000x longer)
- → Energy is 1000 x higher
- recurrence time is years (only 6 bursts have been seen so far, two in the same system)

Model Paradigm

- Occurs in ashes layers of some 1000 XRBs
- Toy models of a heated layer reproduce basic lightcurve features
- Superburst ignited by ¹²C burning
- For ignition a mass fraction of ~10% of ¹²C is needed
- Once ignited, other light fuels, like ¹⁶O and ²⁸Si, can burn
- Possible contribution to energy generation by photodisintegration of heavy nuclei

