Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

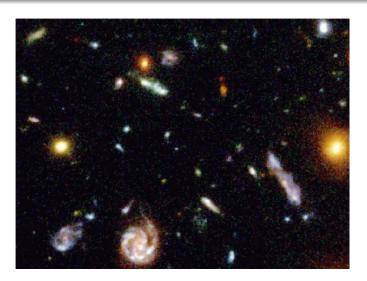
> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

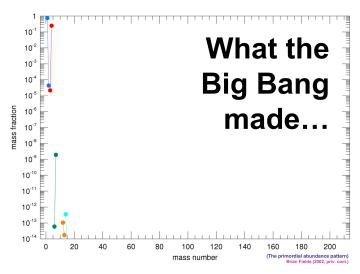
The Black Hole at Los Alamos

"The Black Hole is a gold mine for students with science projects, researchers on a tight budget, tinkerers and would-be wizards."

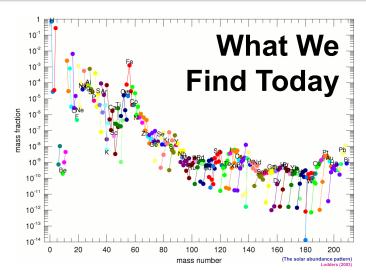
S=10772

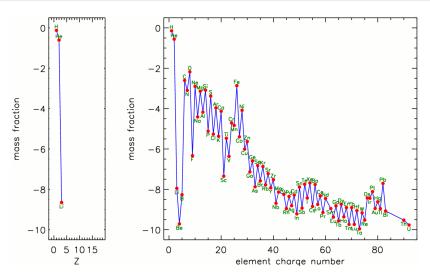

Overview

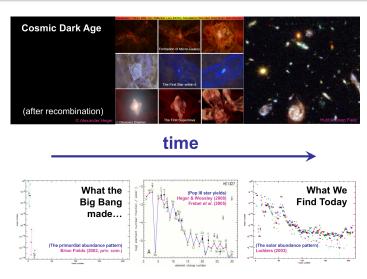
- The First Stars
 - Formation of the First Stars
 - Mass of the First Stars
 - Fate of the First Stars


The Cosmic Dark Age

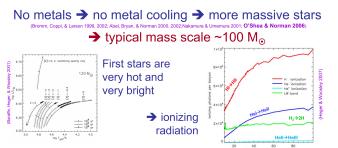
(after recombination)




First Stars and Nucleosynthesis

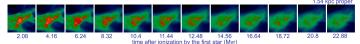


First Stars and Nucleosynthesis

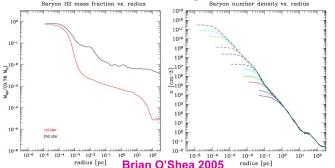


First Stars and Nucleosynthesis

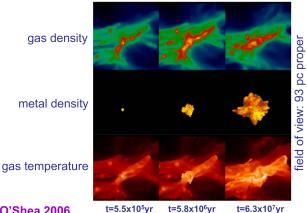
Formation and Properties of the First Stars



No metals → no mass loss → end life as massive stars



Formation of the Second Stars


Formation of the Second Stars

Ionization by the first star initiates second generation of primordial stars Baryon H2 mass fraction vs. radius Baryon number density vs. radius

Explosion of 30 M_☉ Pop III Star

Brian O'Shea 2006

What is the IMF of the first stars?

Mass of the First Stars

What do we Mean by *First* Stars?

(after McKee, 2008; O'Shea, McKee, Heger, Abel 2008)

Population III

Stars of primordial composition

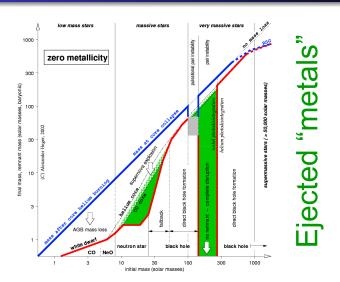
- Population III.1
 - Form "independently"
 - Formation only determined by cosmological parameters
- Population III.2

Formation changed by input from radiation, kinetic feedback, cosmic rays, etc. from Population III.1 stars

- Polluted Stars
 - Population II.5

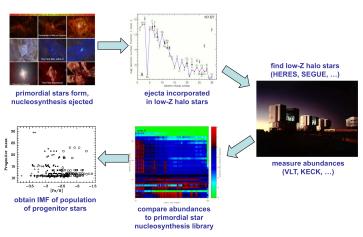
Enrichment does not affect cooling for stars formation Below "critical" limit ($[Z] < \sim -3.5$)

"True" Population II
 Enrichment affects formation and evolution


What is the fate of the first stars?

Fate of the First Stars

Nuclear burning stages


Burning stages		20 M _☉ Star		200 M _☉ Star	
Fuel	Main Product	T (10 ⁹ K)	Time (yr)	T (10 ⁹ K)	Time (yr)
Н	He	0.02	10 ⁷	0.1	2×10 ⁶
He	0, C	0.2	10 ⁶	0.3	2×10 ⁵
C	Ne, Mg	0.8	10³	1.2	10
Ne	O, Mg	1.5	3	2.5	3×10 ⁻⁶
O	Si, S	2.0	8.0	3.0	2×10 ⁻⁶
Si≜	Fe	3.5	0.02	4.5	3×10 ⁻⁷

Fate of the First Stars

Fate of the First Stars

Reconstruction of the IMF

The Legacy of the First Stars

- Where were the stars that we see today as UMP halo stars really form?
- Where to find the ejecta of primordial stars and can we see their supernovae?
- Feedback of the first stars on their environment
- Metal pollution of the early universe

