◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Nuclear Physics I: Nuclear Astrophysics PHYS 8801

Alexander Heger¹

¹Minnesota Institute for Astrophysics School of Physics and Astronomy University of Minnesota

Nuclear Physics I: Nuclear Astrophysics, Spring 2012

Supernova	е

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Agenda

Supernovae

- Supernova Types and Light Curves
- 2 Black Holes
 - Kerr Black Holes

3 Binary Stars

- Binary Types
- The Roche Model
- Interacting Binaries

Supernova Types as Function of Mass and Metallicity

(single stars)

	SN Type	pre-SN stellar structure	
	llp	> 2 M $_{\odot}$ H envelo	pe
	IIL	< 2 M_{\odot} H envelo	ре
	lb/c	no H envelo	pe
Type lb/c He core mass at explosion		explosion energy	display
> 15 N	∕I₀	direct collapse	none
~158	M₀	weak	dim
~8…5 M _☉		strong	dim
< 5 N	l _o	strong	bright

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Supernovae o●oooo	Black Holes	Binary Stars	Nuclear Masses
Supernovae			

Sequence of increasingly stripped cc SNe

Supernovae		
00000		

Black Holes

Binary Stars

Core Collapse Supernovae

◆ロ▶ ◆聞▶ ◆臣▶ ◆臣▶ ─臣 ─の��

Core Collapse Supernovae – 3D

Cold inflow and **hot outflow** in 3D simulations → similar to dipolar flow pattern observed in 2D rotationally symmetric simulations

900

Supernovae ooooooo	Black Holes	Binary Stars	Nuclear Ma
Supernovae			

Neutron Star Kicks

Dipolar oscillation may explain observed neutron star kicks of several 100 km/s.

Explosive Nucleosynthesis

in supernovae

Fuel	Main Product	Secondary Product	Т (10 ⁹ К)	Time (s)	Main Reaction
Innermost ejecta	<i>r</i> -process	-	>10 low Y _e	1	(n, γ), β ⁻
Si, O	⁵⁶ Ni	iron group	>4	0.1	(α,γ)
Ο	Si, S	CI, Ar, K, Ca	3 - 4	1	¹⁶ O + ¹⁶ O
O, Ne	O, Mg, Ne	Na, Al, P	2 - 3	5	(γ,α)
		p-process ¹¹ B, ¹⁹ F, ¹³⁸ La, ¹⁸⁰ Ta	2 - 3	5	(γ ,n)
		v-process		5	(v, v'), (v, e ⁻)

500

Black Holes

Binary Stars

Nuclear Masses

Black Holes

Saturn as seen through the gravitational lense of a black hole

・ロット (雪) (日) (日)

э

Black Holes

Binary Stars

Nuclear Masses

Density and Radii of Astronomical Objects

- comparison of average density of astronomical objects
- average density of black holes decreases with increasing mass

 $R_{
m s}\sim M$ $V\sim R^{3}$ $ar{
ho}=M/V\sim M^{-2}$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

Black Holes

Binary Stars

Black Holes - Angular Momentum and Orbits

in this figure the following conventions were used:

- "gravitational radius"
 r_g = R_s
- normalized angular momentum $\tilde{L} = I/cmr_g$ where *I* is the angular momentum of the particle
- specific *total* energy of the particle $\tilde{E} = E/mc^2$ $E = mc^2 + E_{bind} + E_{kin}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Black Holes

Binary Stars

Black Holes - Energy and Orbits

Fig. 3. Effective black hole potential. $1 - \widetilde{E} = \widetilde{E}_1$, $2 - \widetilde{E} = \widetilde{E}_2$, $3 - \widetilde{E} = \widetilde{E}_3$, $4 - \widetilde{E} = \widetilde{E}_4$

Types of orbits

- 1/a: bound/closed, $0 < \tilde{E} < \tilde{E}_{max}$
- 2/b: unbound/open, $\tilde{E} < 0$
- 3/c: "unbound"/capture for $\tilde{E} > \tilde{E}_{max} > 0$ (not in classical mechanics)
- 4/d: closed capture loop $\tilde{E} < \tilde{E}_{max}$, can be $\tilde{E} < 0$ or $\tilde{E} > 0$ (not in classical mechanics)

Black Holes

Binary Stars

Nuclear Masses

Kerr Black Holes

Fig. 7. A rotating black hole: 1-horizon, 2-ergosphere, 3-static limit

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Black Holes

Binary Stars

Nuclear Masses

Particle Orbit around a Kerr Black Hole

Black Holes

Binary Stars

Nuclear Masses

Critical Radii in Black Holes

Orbit	a = 0	a = M	
		L > 0	L < 0
$r_{\rm photon}$	1.5	0.5	2.0
r _{bind}	2.0	0.5	2.92
$r_{\rm bound}$	3.0	0.5	4.5

Schwarzschild Case

photon circular orbit

$$\textit{r}_{bind} = 1.5\textit{R}_{s} = 3\frac{\textit{GM}}{\textit{c}^{2}}$$

last stable orbit

$$r_{\text{bound}} = 3R_{\text{s}} = 6\frac{GM}{c^2}, \ v = \frac{c}{2}$$

 last marginally stable circular orbit

$$\mathit{r}_{\mathsf{bind}} = 2\mathit{R}_{\mathsf{s}} = 4 \frac{\mathit{GM}}{\mathit{c}^2} \,, \, \mathit{v} = \mathit{v}_{\mathsf{esc}}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Black Holes 0000000

Orbits and Energies

(日)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Summary - Comparison of Compact Remnants

Distinguishing Traits of Compact Objects				
Object	Mass ^a (M)	Radius ^b (R)	Mean Density (g cm ⁻³)	Surface Potential (GM/Rc^2)
Sun White dwarf Neutron star Black hole	$M_{\odot} \leq M_{\odot} \\ \sim 1-3M_{\odot} \\ \text{Arbitrary}$	R_{\odot} $\sim 10^{-2}R_{\odot}$ $\sim 10^{-5}R_{\odot}$ $2GM/c^{2}$	$1 \\ \leq 10^7 \\ \leq 10^{15} \\ \sim M/R^3$	$ \begin{array}{r} 10^{-6} \\ \sim 10^{-4} \\ \sim 10^{-1} \\ \sim 1 \end{array} $

 ${}^{a}M_{\odot} = 1.989 \times 10^{33} \text{ g}$ ${}^{b}R_{\odot} = 6.9599 \times 10^{10} \text{ cm}$

Black Holes

Binary Stars

Nuclear Masses

Binary Stars ('Binaries')

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Black Holes

Binary Stars

Nuclear Masses

Roche Model

$$\begin{aligned}
\phi(x,y,z) &= -\frac{GM_{1}}{1r_{1}^{2}1} - \frac{GM_{2}}{1r_{2}^{2}1} - \frac{1}{2} |\vec{S}|^{2} \omega^{2} & \xrightarrow{M_{1}} y^{2} + \frac{y^{2}}{r_{2}} |\vec{r}_{2}| \\
& \text{centrifugal potential} \\
& |\vec{r}_{1}| &= (x^{2} + y^{2} + z^{2})^{1/2} , \quad |\vec{r}_{2}| &= ((A - x)^{2} + y^{2} + z^{2})^{1/2} \\
& |\vec{S}| &= ((x - x_{s})^{2} + y^{2})^{1/2} &= \left[\left(x - \frac{M_{2}}{M_{1} + M_{2}} A \right)^{2} + y^{2} \right]^{1/2} \\
& \omega^{2} &= \frac{G(M_{1} + M_{2})}{A^{3}} &: \quad 3^{rd} \text{ Kepler's Law} \\
& \text{Introduce dimensionless variables:} \quad \vec{\xi} &= \frac{x}{A} ; \quad \vec{\gamma} &= \frac{y}{A} ; \quad \vec{\xi} &= \frac{x}{A} ; \quad \vec{\gamma} &= \frac{y}{A} ; \quad \vec{\xi} &= \frac{x}{A} ; \quad \vec{\gamma} &= \frac{y}{A} ; \quad \vec{\xi} &= \frac{x}{A} ; \quad \vec{\gamma} &= \frac{y}{A} ; \quad \vec{\xi} &= \frac{x}{A} ; \quad \vec{\xi} &= \frac{x}{A$$

E 990

Black Holes

Binary Stars

Nuclear Masses

Roche Potential

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Black Holes

Binary Stars

Nuclear Masses

Lagrange Points

Five Lagrange points:

L1, L2, L3: unstable

L4,L5: stable

596

Black Holes

Binary Stars

Nuclear Masses

Contact Binaries

 Supernovae
 Black Holes
 Binary Stars
 Nuclear Masses

 OOODOO
 OOODOO<OO</td>
 OOODOO<OO</td>
 OO

Stability of mass transfer depends on reaction of donor and receiving star

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Star + compact remnant + Roche-Lobe overflow: X-ray binaries

WD + companion: Novae, Dwarf Novae, Type la supernovae

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

NS + companion: X-ray bursts, millisecond pulsars, ...

NS+NS: Binary pulsars

Black Holes

Binary Stars

Binary Pulsar Production

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで