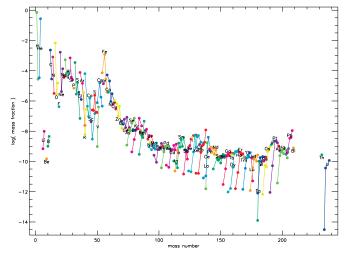
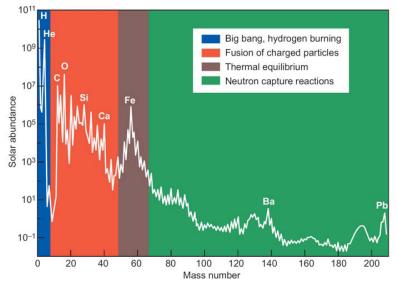
Nuclear Physics I: Nuclear Astrophysics PHYS 8801

Alexander Heger¹

Minnesota Institute for Astrophysics School of Physics and Astronomy University of Minnesota


Nuclear Physics I: Nuclear Astrophysics, Spring 2012

Agenda


Nucleosynthesis Overview

Nucleosynthesis in Massive Stars

The Origin of the Elements

The Origin of the Elements

Burning stages in a 20 M_☉ Star

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	4 H → ^{cNO} ⁴ He
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ \rightarrow ¹² C ¹² C(α , γ) ¹⁶ O
C	Ne, Mg	Na	8.0	10³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	20 Ne $(\gamma,\alpha)^{16}$ O 20 Ne $(\alpha,\gamma)^{24}$ Mg
0	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si, Š	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

Explosive Nucleosynthesis in a 20 M_☉ Star

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (s)	Main Reaction
Innermost ejecta	<i>r</i> -process <i>vp</i> -process	-	>10?	1	(n ,γ), β-
Si, O	⁵⁶ Ni	iron group	>4	0.1	(α,γ)
0	Si, S	CI, Ar, K, Ca	3 - 4	1	¹⁶ O + ¹⁶ O
O, Ne	O, Mg, Ne	Na, Al, P	2 - 3	5	(γ,α)
		<i>p</i> -process 11B, 19F, 138La,180Ta	2 - 3	5	(γ, n)
		ν-process		5	(v, v'), (v, e ⁻)