Neutrinos & Origin of Elements PHY 8850

Alexander Heger^{1,2}

¹ School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

Neutrinos & Origin of Elements, Spring 2009

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

ă.

Neutrinos & Origin of Elements - Alexander Heger **Lecture 4:** [Stars - Thermonuclear Burning](#page-0-0)

イロト 不優 トメ 君 トメ 君 トッ

重。 2990

Overview

Neutrinos & Origin of Elements - Alexander Heger **Lecture 4:** [Stars - Thermonuclear Burning](#page-0-0)

- 4 로 베 4 로 베

4 0 8 4 伊 ▶ 重。 299

Burning Phases in Stars

Neutrinos & Origin of Elements - Alexander Heger **Lecture 4:** [Stars - Thermonuclear Burning](#page-0-0)

€ □ 下

4 伊 ▶

医毛囊 医牙足骨炎

重。 299

Burning Phases in the Stellar Interior

 $2Q$

Neutrinos & Origin of Elements - Alexander Heger **Lecture 4:** [Stars - Thermonuclear Burning](#page-0-0)

Hydrogen Burning - the two modes

- Two basic modes of hydrogen burning are distinguished
- The pp-chain in low-mass stars
- The Carbon-Nitrogen-Oxygen (CNO) cycle in high-mass stars

→ 重 → → 重 → →

÷.

Hydrogen Burning - pp chains

 $2Q$

∍

Energy release: *Q*(*pp*1) = 26.20*MeV Q*(*pp*2) = 25.67*MeV Q*(*pp*3) = 19.20*MeV* Reaction rate: $\langle \sigma v \rangle \propto T^4$

4 0 8

Notes on pp hydrogen burning

- All four chains fuse 4 protons to one $4He -$ and therefore have the same difference in mass excess. They have the same energy supply.
- Different Q-values (amount of energy release) due to different amounts of energy being *carried away by neutrinos*.
- With increasing temperature the dominant burning switches from pp1 to pp2 to pp3 chains.

医电子 化重子

Hydrogen Burning - CNO bi-cycle

Energy release: *Q*(*CNO*) = 24.97*MeV*

Reaction rate: $\langle \sigma v \rangle \propto T^{16}$

Branching: CNO-1 : CNO-2 ∼ 10,000 : 1

 $2Q$

ă

Hydrogen Burning - CNO bi-cycle

$$
{}^{12}\overset{\sqrt{1}}{C} + {}^{1}\text{H} \rightarrow {}^{13}\text{N} + \gamma
$$
\n
$$
{}^{13}\text{C} + {}^{1}\text{H} \rightarrow {}^{14}\text{N} + \gamma
$$
\n
$$
{}^{13}\text{C} + {}^{1}\text{H} \rightarrow {}^{14}\text{N} + \gamma
$$
\n
$$
{}^{15}\text{O} \rightarrow {}^{15}\text{N} + e^{+} + \nu
$$
\n
$$
{}^{15}\text{N} + {}^{1}\text{H} \rightarrow {}^{12}\text{C} + {}^{4}\text{He}
$$
\n
$$
{}^{15}\text{N} + {}^{1}\text{H} \rightarrow {}^{12}\text{C} + {}^{4}\text{He}
$$
\n
$$
{}^{15}\text{N} + {}^{1}\text{H} \rightarrow {}^{12}\text{C} + {}^{4}\text{He}
$$
\n
$$
{}^{15}\text{O} + \gamma
$$
\n
$$
{}^{16}\text{O} + {}^{1}\text{H} \rightarrow {}^{17}\text{F} + \gamma
$$
\n
$$
{}^{17}\text{P} \rightarrow {}^{17}\text{O} + e^{+} + \nu
$$
\n
$$
{}^{17}\text{O} + {}^{1}\text{H} \rightarrow {}^{14}\text{N} + {}^{4}\text{He}
$$

Energy release: *Q*(*CNO*) = 24.97*MeV*

Reaction rate: $\langle \sigma v \rangle \propto T^{16}$

Branching: CNO-1 : CNO-2 ∼ 10,000 : 1

ă.

Hydrogen Burning - CNO bi-cycle

- Usually the beta-decays are fast compared to the capture reactions, (p, γ) .
- \bullet ¹⁴O: $\tau_{1/2}$ = 70 sec 15O: $\tau_{1/2} = 122$ sec ¹³N: $\tau_{1/2}$ = 10 min ¹⁷F: $\tau_{1/2} = 64$ sec 18O: $\tau_{1/2} = 110$ min
- $14N(p,\gamma)$ ¹⁵O usually is the slowest "bottleneck" reaction.
- CNO cycle burning converts most CNO isotopes into ¹⁴N.

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

Competition of Hydrogen-Burning Modes

Transition from pp-chains in low-mass stars (low *T*) to CNO chains in high-mass stars (high *T*)

 $2Q$

€

Was that all of hydrogen burning...?

Future questions on hydrogen burning

- What happens at the first stars? (no initial CNO)
- What happens at high temperatures?

ミト メモト

ă

 QQ

Normal and Hot CNO Cycles

The Triple- α Reaction

Step 1: 4 He $+$ 4 He \rightleftharpoons 8 Be Built up equilibrium abundance of ⁸Be Lifetime of 8 Be is only 2.6 × 10⁻¹⁶ s!

4 0 8

 2990

э

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

Step 2: 8 Be + 4 He $\rightarrow {}^{12}C + \gamma$

 $Q_{3\alpha} = 7.275 \, \text{MeV}$ $<\!\sigma$ ν $>$ \propto $\rho^2 T^{40}$

Helium Burning level scheme

Neutrinos & Origin of Elements - Alexander Heger **Lecture 4:** [Stars - Thermonuclear Burning](#page-0-0)

÷.

B

× \rightarrow 299

Additional Reactions of Helium Burning

Oxygen Production

- 4 He + 12 C \rightarrow 16 O + γ
- $Q = 7.162 \text{ MeV}$

 $\langle \sigma v \rangle \propto \rho T^{40}$

The final abundance of carbon is set by the competition of 3α and $^{12} \mathsf{C}(\alpha, \gamma)^{\mathsf{16}} \mathsf{O}$ reactions;

The production of ${}^{16}O$ can only start when a sufficient amount of ¹²C has been made.

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

Carbon and Oxygen Burning

Carbon Burning
 $^{12}C + ^{12}C \rightarrow ^{24}Mg + \infty$

Average $Q = 13$ MeV

Oxygen Burning

 2990

B

重

Neon burning proceeds by a combination of photo-disintegrations and α captures:

 20 Ne + $\gamma \rightarrow$ ¹⁶O + ⁴He, $Q = -4.73$ MeV

This reaction dominates over the inverse reaction known from helium burning for $T > 1.5 \times 10^9$ K.

Subsequently, the ⁴He is captured on another ²⁰Ne nucleus: 20 Ne + 4 He \rightarrow 24 Mg + γ .

The net result is $2\,{}^{20}\mathrm{Ne} + \gamma \rightarrow {}^{16}\mathrm{O} + {}^{24}\mathrm{Mg} + \gamma \ , \quad \text{$Q=+4.583$ MeV}$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷.

Actually, often we have more sulfur in the star than there is silicon, but it is custom to call this phase "silicon burning".

Typical burning temperature is $3...3.5 \times 10^9$ K.

Similar to neon burning, silicon burning proceeds as a series of photo-disintegration reactions, mostly, (γ, α) , and helium capture reactions, (α, γ) to build up iron group elements.

 $(\gamma, \alpha) \rightleftharpoons (\alpha, \gamma)$

At the high *T* and ρ of these conditions, also *weak reactions* occur, converting protons into neutrons and leading to a *neutron excess*. This allows to actually make stable iron isotopes.

K ロ ト K 何 ト K ヨ ト K ヨ ト

 QQ

Beyond Silicon/Sulfur Burning

NSE distribution for $T = 3.5 \times 10^9$ K. $\rho = 10^7$ g/cm³

After silicon burning *T* and ρ is so high that the nuclei are in **nuclear statistical equilibrium**, i.e., the reactions are fast compared to the evolution time-scale of the star, and the abundance distribution of the nuclei is given by a *Saha equation*.

Summary of Energetics

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

重

 299