Neutrinos & Origin of Elements PHY 8850

Alexander Heger^{1,2}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

Neutrinos & Origin of Elements, Spring 2009

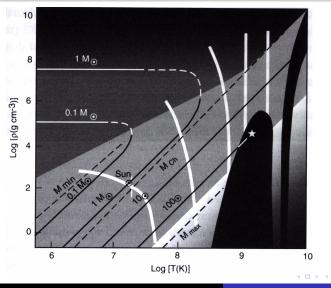
・ロト ・ 日本・ ・ 日本・

Neutrinos & Origin of Elements - Alexander Heger Lecture 5: Evolution of Stars

ヘロト 人間 ト ヘヨト ヘヨト

3

2 Evolution of Low-Mass Stars

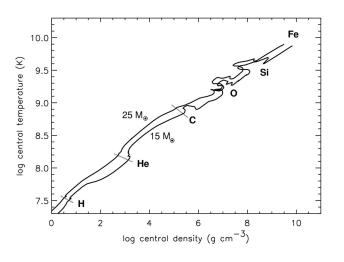


Neutrinos & Origin of Elements - Alexander Heger Lecture 5: Evolution of Stars

・ロット (雪) () () () ()

3

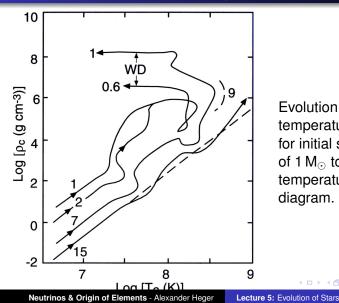
Evolution Tracks


Evolution of Stars in the temperaturedensity diagram

⇒ < ⇒ >

э

Neutrinos & Origin of Elements - Alexander Heger


Evolution of Stars, 15 M_{\odot} and 25 M_{\odot}

Evolution of central temperature and density for initial stellar masses of $15 \, \text{M}_{\odot}$ and $25\,M_\odot$ in the densitytemperature diagram

(note reversal of T and ρ)

Evolution of Stars, $1-15 M_{\odot}$

Evolution of central temperature and density for initial stellar masses of 1 M_{\odot} to 15 M_{\odot} in the temperature-density diagram.

프 🖌 🛪 프 🕨

э

The Chandrasekhar Mass

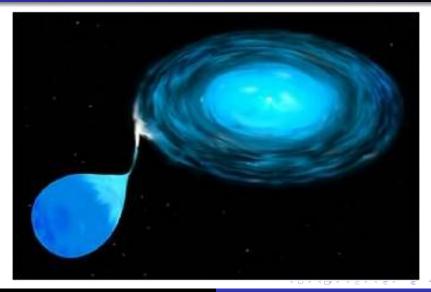
• The limiting mass for degenerate stars is called the **Chandrasekhar Mass**

$$M_{\rm Ch} = \frac{M_3}{4\pi} \left(\frac{3}{2}\right)^{1/2} \left(\frac{hc}{Gu^{4/3}}\right)^{3/2} \mu_{\rm e}^{-2} = (5.836\,{\rm M}_\odot)\mu_{\rm e}^{-2}$$
$$M_{\rm Ch} = 1.459\,{\rm M}_\odot \left(\frac{\mu_{\rm e}}{2}\right)^{-2}$$

(Nobel Prize in Physics 1983)

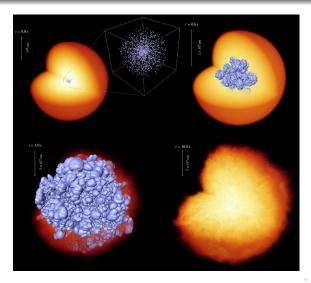
- for an iron core with $\mu_{\rm e}=$ 2.15 we obtain $M_{\rm Ch}=$ 1.26 M $_{\odot}$
- for "hot" cores of massive stars partially degenerate relativistic equation of state has to be used $\Rightarrow M_{\rm crit} > M_{\rm Ch}$

$$M_{
m crit} \approx M_{
m Ch} igg[1 + rac{\pi^2 k^2 T^2}{\epsilon_{
m F}^2} igg], \quad \epsilon_{
m F} = 1.11 igg(rac{
ho}{10^7 \, {
m g \, cm^{-3}}} \, {
m Ye} igg)^{1/3} \, {
m MeV}$$


where $\epsilon_{\rm F}$ is the Fermi energy for the relativistic and partially degenerate electrons, $Y_{\rm e} = 1/\mu_{\rm e}$.

Implications and Applications

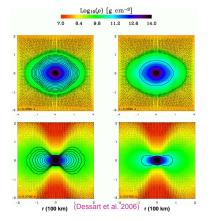
What happens when the Chandrasekhar Mass is reached?


- for massive stars (take into account corrections for μ_e and T): core collapses to form neutron star or black hole
- usually a supernova results, but, especially in case a black hole is formed (big core), much of the inner part of the star may be swallowed;
- in this case, at rare occasions, powerful gamma-ray bursts may result.
- for white dwarfs, it depends on the composition:
 - for white dwarfs made of Ne, Mg, and O: resulting from heavier progenitor stars, it will collapse to a neutron star ("electron capture supernova")
 - for white dwarfs made of carbon and oxygen: it will ignite burning of carbon in the center and explode as a thermonuclear Type la supernova

Type la Supernova Progenitor

Neutrinos & Origin of Elements - Alexander Heger

Type la Supernova Explosion


simulation of a Type Ia supernova explosion (by Fritz Röpke)

э

Neutrinos & Origin of Elements - Alexander Heger

Accretion Induced Collapse

Accretion Induced Collapse

- NeMgO WD accretes from companion star
- When Chandrasekhar mass is approached, electron captures reduce electron degeneracy pressure support
 Rapid collapse and

bounce (faint SN)

< 🗗

< ⊒ > <

-∃=->

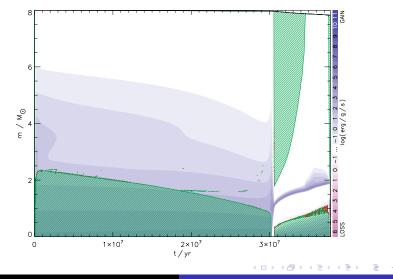
Fate of Stars

- stars with masses below 0.7 M_☉ have not yet evolved off the MS even if as old as the universe! These are red dwarf stars. All ever formed are still around.
- stars with initial masses $M \lesssim 2 \,\mathrm{M}_{\odot}$ ignite helium burning under degenerate conditions in their core. They are usually referred to as low-mass stars.
- stars with initial mass 2M_☉ ≤ 9M_☉ are called intermediate mass stars. They ignite helium burning non-degenerate. We can distinguish stars that later ignite carbon burning in the center (*M* ≥ 7.5 M_☉) and those that don't.
- Stars with masses $M \gtrsim 9 \,\text{M}_{\odot}$ form iron codes that collapse to make core collapse supernovae

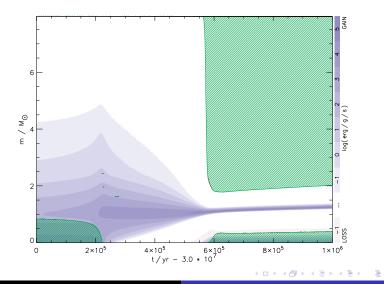
ヘロト 人間 ト ヘヨト ヘヨト

Neutrinos & Origin of Elements - Alexander Heger Lecture 5: Evolution of Stars

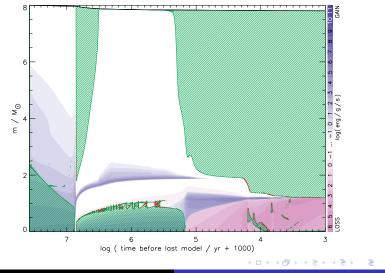
ヘロア 人間 アメヨア 人口 ア

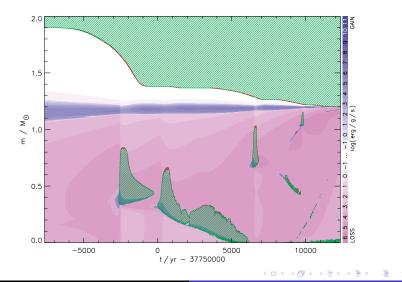

3

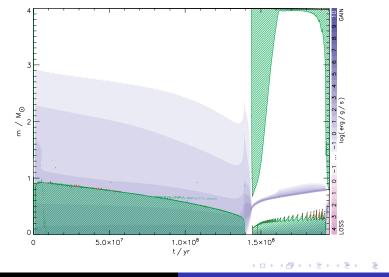
The Schönberg-Chandrasekhar Limit


- Low mass stars have a radiative core.
- hydrogen first depletes in the center, then increasingly further out
- this leads to the gradual build-up of a non-degenerate helium core of increasing mass.
- a critical limit exists above which this core no longer can sustain the pressure against the overlaying envelope layers, the The Schönberg-Chandrasekhar Limit.

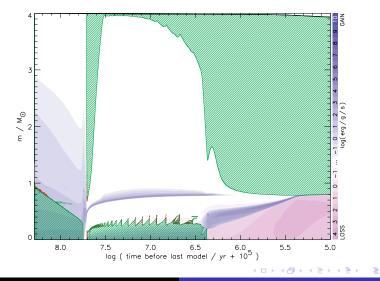
・ 同 ト ・ ヨ ト ・ ヨ ト …


Kippenhahn Diagram, 8 M_o Star

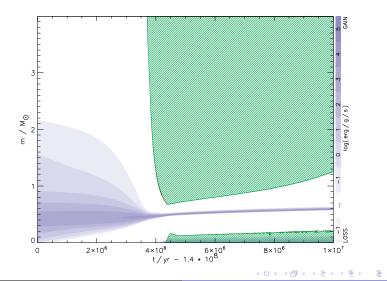

Kippenhahn Diagram, $8 M_{\odot}$ Star, He Ignition


Kippenhahn Diagram, 8 M_o Star

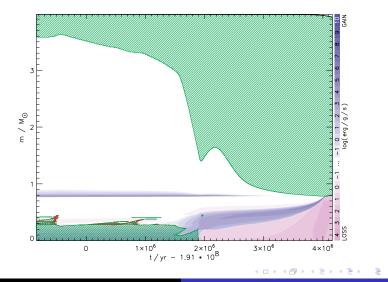
Kippenhahn Diagram, $8 M_{\odot}$ Star, Off-Center C Ignition

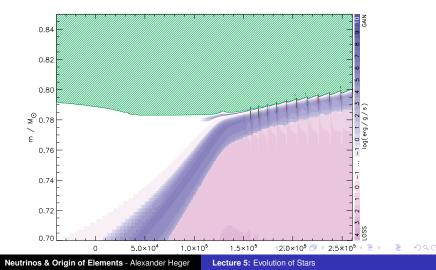


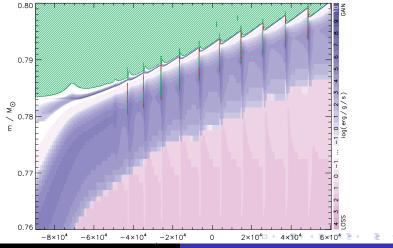
Kippenhahn Diagram, $4 M_{\odot}$ Star



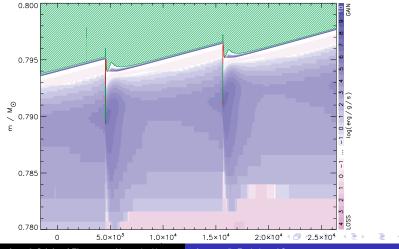
Neutrinos & Origin of Elements - Alexander Heger Lecture 5


Kippenhahn Diagram, $4 M_{\odot}$ Star

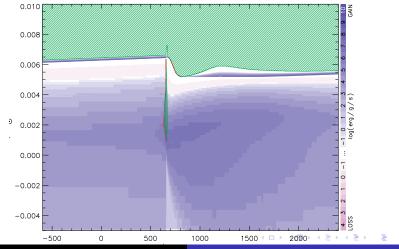

Kippenhahn Diagram, $4 M_{\odot}$ Star, He Ignition


Kippenhahn Diagram, 4 M_☉ Star, He Depletion

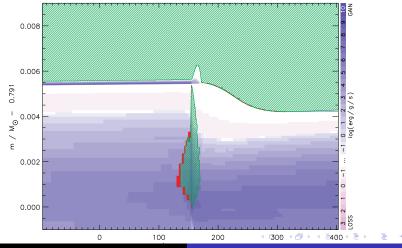
Kippenhahn Diagram, $4 M_{\odot}$ Star, Post-Core He burning



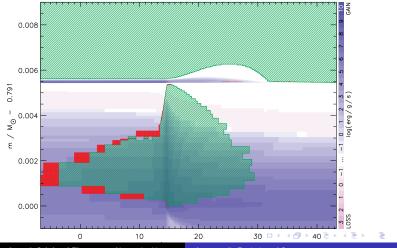
Kippenhahn Diagram, $4 M_{\odot}$ Star, Post-Core He burning


Neutrinos & Origin of Elements - Alexander Heger

Kippenhahn Diagram, $4 M_{\odot}$ Star, Post-Core He burning


Neutrinos & Origin of Elements - Alexander Heger

Kippenhahn Diagram, $4 M_{\odot}$ Star, Post-Core He burning


Neutrinos & Origin of Elements - Alexander Heger

Kippenhahn Diagram, $4 M_{\odot}$ Star, Post-Core He burning

Neutrinos & Origin of Elements - Alexander Heger

Kippenhahn Diagram, $4 M_{\odot}$ Star, Post-Core He burning

Neutrinos & Origin of Elements - Alexander Heger

The Asymptotic Giant Branch (I)

asymptotic giant branch stars are characterized by

- two burning shells, hydrogen burning and helium burning, in an unstable configuration, leading to thermal pulses
- luminosity uniquely determined by core mass, not total mass
- strong stellar winds from the surface, driven by pulsations and radiation pressure on dust forming in the outer layers

・聞き ・ヨト ・ヨト

The Asymptotic Giant Branch (II)

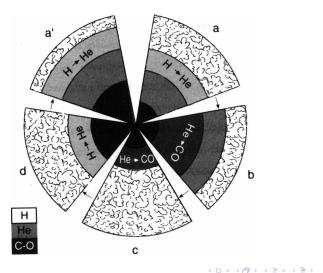
Eventually the entire envelope is blown away leaving behind a white dwarf star. Typical wind mass loss rates are of the order of $10^{-6}\,M_\odot/yr$

$$\dot{M} \sim 10^{-13} \mathrm{M_{\odot}}/\mathrm{yr} \; rac{L}{\mathrm{L_{\odot}}} rac{R}{\mathrm{R_{\odot}}} rac{\mathrm{M_{\odot}}}{M}$$

for $M > 0.5 M_{\odot}$ luminosity is given by

$$\frac{L}{L_{\odot}} = 6 \times 10^4 \left(\frac{M}{M_{\odot}} - 0.5\right)$$

< 回 > < 回 > < 回 > .

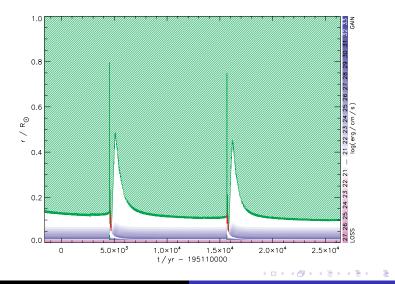

The Asymptotic Giant Branch (III)

- an extended phase of steady hydrogen shell burning builds up an increasingly thicker degenerate helium layer for some hundred years
- $\bullet\,$ thermonuclear runaway in helium shell, $L\sim 10^8\,L_\odot$
- "third" dredge-up after after helium shell flash
- nucleosynthesis of the strong component of the *s*-process in the helium shell making heavy elements up to lead starting from iron

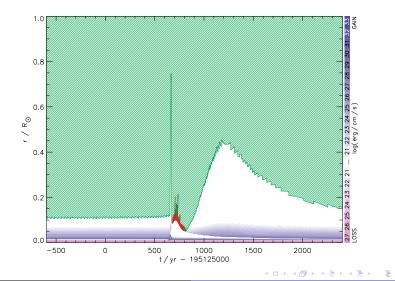
ヘロト ヘアト ヘビト ヘビト

- dredge-up brings freshly synthesized material into the envelope where winds blow it away.
- growth of the core is due to competition ("race") of dredge-up after helium shell flash and mass loss

Change of Structure During AGB Cycle

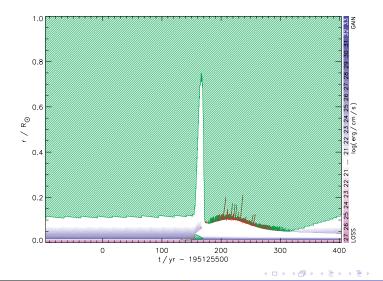


Neutrinos & Origin of Elements - Alexander Heger

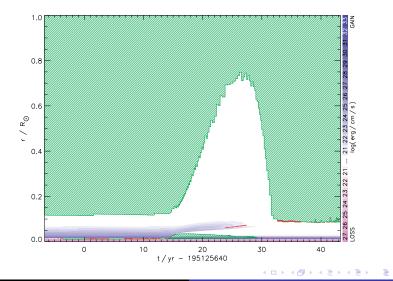

Lecture 5: Evolution of Stars

ъ

Kippenhahn-Radius Diagram, 4 M_o Star, Start of AGB



Kippenhahn-Radius Diagram, 4 M_o Star, Start of AGB

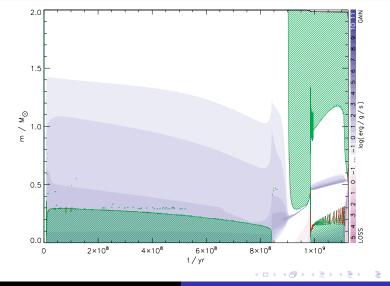

Neutrinos & Origin of Elements - Alexander Heger

Kippenhahn-Radius Diagram, 4 M_o Star, Start of AGB

Neutrinos & Origin of Elements - Alexander Heger Lecture

Kippenhahn-Radius Diagram, 4 M_o Star, Start of AGB

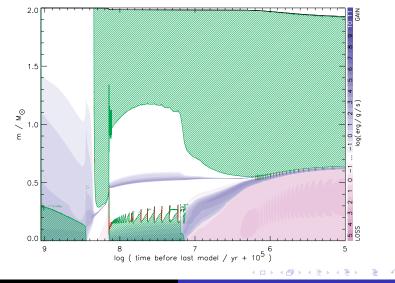
Neutrinos & Origin of Elements - Alexander Heger


Core Contraction and Degeneracy

- Schönberg-Chandrasekhar limit only valid for ideal gas
- for degenerate gas instead we need to use

$$P_{
m s,max}\lesssim {
m K_1}{\left(rac{3M_{
m c}}{4\pi{R_{
m c}}^3}
ight)}^{5/3}$$

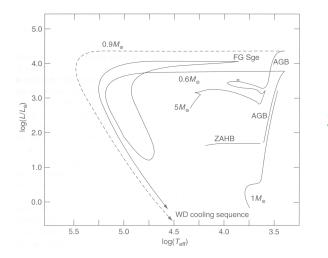
- $\bullet\,$ occurs for stars below about 2 M_\odot
- gradual appearance of the red giant
- hydrogen shell forms and burns outward
- quiet evolution at first
- eventually ignition of helium under degenerate conditions
- thermonuclear runaway: helium flash
- nuclear power of $10^{11} L_{\odot}$ the luminosity of an entire galaxy or a supernova, but invisibly inside the star


Kippenhahn Diagram, $2M_{\odot}$ Star

Neutrinos & Origin of Elements - Alexander Heger Lecture 5: Ex

Lecture 5: Evolution of Stars

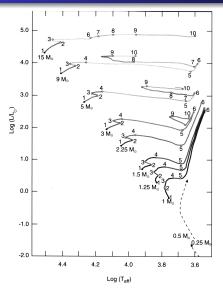
Kippenhahn Diagram, 2M_o Star



Low-Mass Stars and the Horizontal Branch

- after core helium flash, low-mass stars $(0.7 2 M_{\odot})$ undergo contraction and cooling of the envelope
- this is similar to contraction *from* the Hayashi line during star formation, only in *reverse*
- stars of different initial mass have comparable *core mass* at the time of helium flash, but different envelope mass
- formation of horizontal branch (HB) in the HRD, $L\sim 50-100\,L_{\odot}$
- highest envelope masses are to the right, are red
- lifetime on HB is about 10⁸ yr
- mass loss of star on the HB ⇒ mass in the H envelope drops ⇒ change of position on HB

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ


Low-Mass Stars and the Horizontal Branch

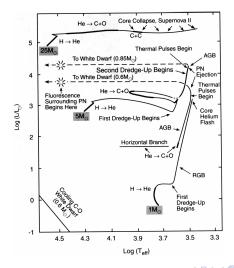
ZAHB = Zero-Age Horizontal Branch

프 🕨 🗉 프

Evolution tracks and lifetimes

Table 8.4	Evolutionary	lifetimes	(vears)	
-----------	--------------	-----------	---------	--

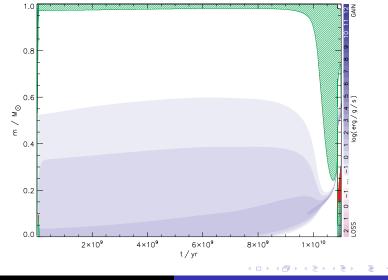
M/M_{\odot}	1-2	2-3	3-4	4-5	5-6	6–7	7–8	8-9	9–10
15	1.0(7)	2.3(5)	←	7.6(4)	→	7.2(5)	6.2(5)	1.9(5)	3.5(4)
9	2.1(7)	6.1(5)	9.1(4)	1.5(5)	6.6(4)	4.9(5)	9.5(4)	3.3(6)	1.6(5)
5	6.5(7)	2.2(6)	1.4(6)	7.5(5)	4.9(5)	6.1(6)	1.0(6)	9.0(6)	9.3(5)
3	2.2(8)	1.0(7)	1.0(7)	4.5(6)	4.2(6)	←	6.6(7)	\rightarrow	6.0(6)
2.25	4.8(8)	1.6(7)	3.7(7)	1.3(7)	3.8(7)				
1.5	1.6(9)	8.1(7)	3.5(8)	1.0(8)	>2(8)				
1.25	2.8(9)	1.8(8)	1.0(9)	1.5(8)	>4(8)				
1.0	7.0(9)	2.0(9)	1.2(9)	1.6(9)	>1(9)				


モト くヨト

э

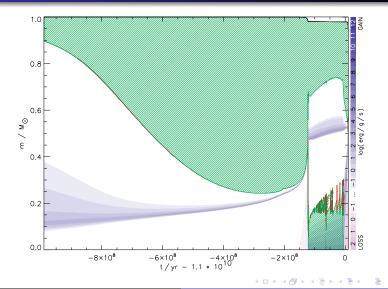
Note: Powers of 10 are given in parentheses.

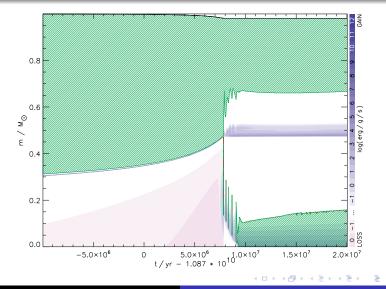
Neutrinos & Origin of Elements - Alexander Heger


Stellar evolution in the HRD

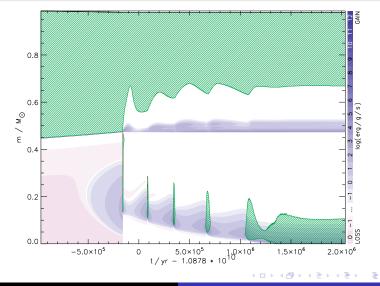
(문)(문)

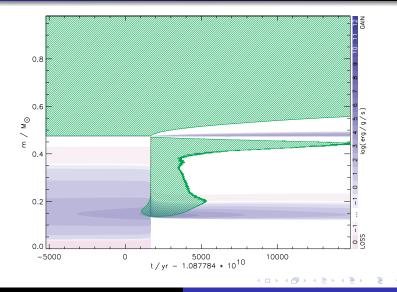
ъ


Kippenhahn Diagram, 1M_☉ Star

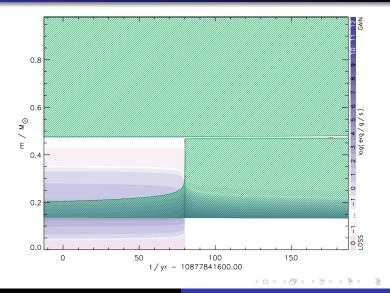

Neutrinos & Origin of Elements - Alexander Heger

Lecture 5: Evolution of Stars


Kippenhahn Diagram, 1M_o Star, Helium Ignition

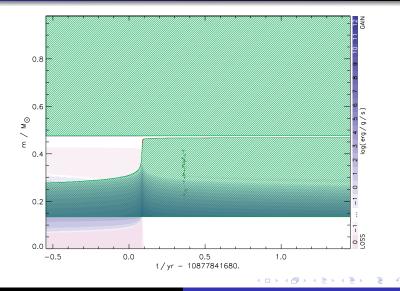

Kippenhahn Diagram, 1M_o Star, Helium Ignition

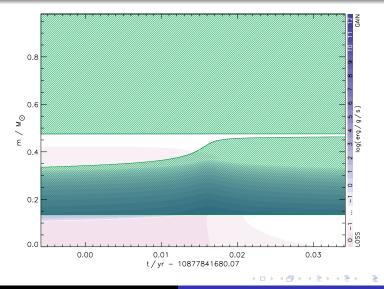
Kippenhahn Diagram, 1M_o Star, Helium Ignition


Kippenhahn Diagram, 1M_o Star, Helium Ignition

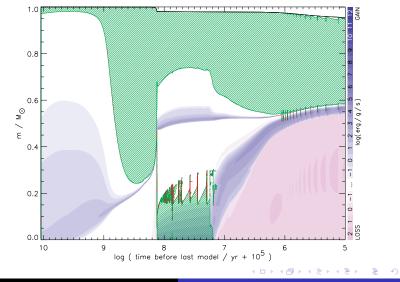
Neutrinos & Origin of Elements - Alexander Heger Lecture 5

Lecture 5: Evolution of Stars


Kippenhahn Diagram, 1M_o Star, Helium Ignition


Neutrinos & Origin of Elements - Alexander Heger

Lecture 5: Evolution of Stars


Kippenhahn Diagram, 1M_o Star, Helium Ignition

Kippenhahn Diagram, 1M_o Star, Helium Ignition

Kippenhahn Diagram, 1M_☉ Star

White Dwarf Star Masses

Stars with initial masses $\sim 7.5-9\,M_\odot$

- $\bullet\,$ exceed CO core mass of $\sim 1.1\,M_{\odot}$
- ignite central carbon burning \Rightarrow make ONeMg core
- do not ignite later burning stages
- lose envelope as AGB stars (+PN)
- \Rightarrow ONeMg WDs with $M > 1.1 M_{\odot}$
- but due to IMF: few stars with 7.5 M $_{\odot} < M < 9$ M $_{\odot}$

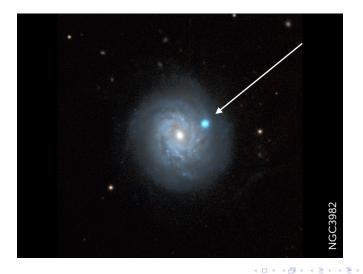
・ 同 ト ・ ヨ ト ・ ヨ ト …

White Dwarf Star Masses

- stars with initial mass $2 M_{\odot} \lesssim M \lesssim 7.5 M_{\odot}$:
 - non-degenerate ignition of central He burning ⇒ CO core
 - no ignition of carbon burning ⇒ CO WD
 - $\bullet\,$ make range of WD with mass below \sim 1.1 M_{\odot}
 - IMF ⇒ more stars
- stars with initial mass 1 M $_{\odot} \lesssim M \lesssim$ 2 M $_{\odot}$:
 - formation degenerate He core, ignites when grown to $\sim 0.6\,M_{\odot}$
 - \Rightarrow CO Core
 - no ignition of carbon burning \Rightarrow CO WD of about that mass

<ロ> (四) (四) (三) (三) (三) (三)

IMF ⇒ many stars


White Dwarf Star Masses

- stars with initial mass 0.7 $M_\odot \lesssim {\it M} \lesssim 1 \ M_\odot$
 - do not ignite carbon burning
 - \Rightarrow He WD
 - typical masses: $\sim 0.2-0.4\,M_{\odot}$
 - IMF ⇒ many stars
- in binary star system
 - stellar core may be uncovered due to loss of envelope by interaction with companion star

・ロト ・四ト ・ヨト ・ヨト

- $\bullet \ \Rightarrow$ typically occurs when star expands
- \Rightarrow at beginning RG or AGB phases
- $\bullet \Rightarrow$ different mass distribution, typically lower masses

Supernovae

æ

Neutrinos & Origin of Elements - Alexander Heger Lecture 5: Evolution of Stars

イロト イポト イヨト イヨト

Supernovae - Overview

Things that blow up

supernovae from massive stars

- CO white dwarf → Type Ia SN, E≈1Bethe
- MgNeO WD, accretion → AIC, faint SN
- "SAGB" star (AGB, then SN) → EC SN
- "normal" SN (Fe core collapse) → Type II SN
- WR star (Fe CC) → Type lb/c
- "Collapsar", GRB → broad line Ib/a SN, "hypernova"
- Pulsational pair SN → multiple, nested Type I/II SN
- Very massive stars → pair SN, ≤100B (1B=10⁵¹ erg)
- Very massive collapsar → IMBH, SN, hard transient
- Supermassive stars → ≥100000 B SN or SMBH

Supernovae

Things that blow up

Neutron star-powered supernovae

- CO white dwarf → Type Ia SN, E≈1Bethe
- MgNeO WD, accretion → AIC, faint SN
- "SAGB" star (AGB, then SN) → EC SN
- "normal" SN (Fe core collapse) → Type II SN
- WR star (Fe CC) → Type lb/c
- "Collapsar", GRB → broad line Ib/a SN, "hypernova"
- Pulsational pair SN → multiple, nested Type I/II SN
- Very massive stars → pair SN,≲100B (1B=10⁵¹ erg)
- Very massive collapsar → IMBH, SN, hard transient

・ 同 ト ・ ヨ ト ・ ヨ ト

Supermassive stars → ≥100000 B SN or SMBH

Supernovae

Things that blow up

Thermonuclear supernovae (no *r*-process)

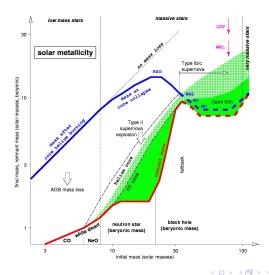
- CO white dwarf → Type Ia SN, E≈1Bethe
- MgNeO WD, accretion → AIC, faint SN
- "SAGB" star (AGB, then SN) → EC SN
- "normal" SN (Fe core collapse) → Type II SN
- WR star (Fe CC) → Type lb/c
- "Collapsar", GRB → broad line Ib/a SN, "hypernova"
- Pulsational pair SN → multiple, nested Type I/II SN
- Very massive stars → pair SN, ≤100B (1B=10⁵¹ erg)
- Very massive collapsar → IMBH, SN, hard transient

(本間) (本語) (本語)

Supermassive stars → ≥100000 B SN or SMBH

Supernovae

Things that blow up


Black hole-powered supernovae ("Collapsars)

- CO white dwarf → Type Ia SN, E≈1Bethe
- MgNeO WD, accretion → AIC, faint SN
- "SAGB" star (AGB, then SN) \rightarrow EC SN
- "normal" SN (Fe core collapse) → Type II SN
- WR star (Fe CC) → Type lb/c
- "Collapsar", GRB → broad line Ib/a SN, "hypernova"
- Pulsational pair SN → multiple, nested Type I/II SN
- Very massive stars → pair SN, ≤100B (1B=10⁵¹ erg)
- Very massive collapsar → IMBH, SN, hard transient

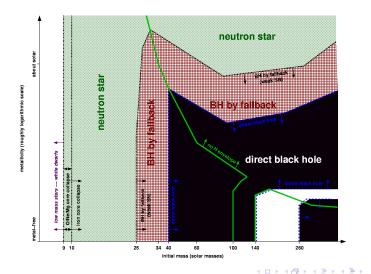
イロト イポト イヨト イヨト

Supermassive stars → ≥100000 B SN or SMBH

Stellar Mass Ranges - Solar Metallicity

Neutrinos & Origin of Elements - Alexander Heger

Lecture 5: Evolution of Stars


Stellar Mass Ranges - Population III Stars

Neutrinos & Origin of Elements - Alexander Heger

Lecture 5: Evolution of Stars

Remnants - Mass and Metallicity

Neutrinos & Origin of Elements - Alexander Heger

Lecture 5: Evolution of Stars